如圖,AB、AC是⊙O的兩條切線,B、C是切點,若∠A = 70°,則∠BOC的度數(shù)為 (   )

A.100°       B.110°      C.120°         D.130°
110°.

試題分析:∵AB、AC是⊙O的兩條切線,B、C是切點,
∴∠B=∠C=90°,∠BOC=180°-∠A=110°.
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖, 射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心, cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值                .(單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖, AE是⊙O直徑,D是⊙O上一點,連結(jié)AD并延長使AD=DC,連結(jié)CE交⊙O于點B,連結(jié)AB.過點E的直線與AC的延長線交于點F,且∠F=∠CED.
(1)求證:EF是⊙O切線;
(2)若CD=CF=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠C為銳角,分別以AB,AC為直徑作半圓,過點B,A,C作
BAC
,如圖所示.若AB=4,AC=2,S1-S2=
π
4
,則S3-S4的值是(  )
A.
29π
4
B.
23π
4
C.
11π
4
D.
4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長為1,若將△AOC繞點O順時針旋轉(zhuǎn)90°得到△BOD,則的長為( 。
A.πB.6πC.3πD.1.5π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB為⊙O的弦,OC⊥AB于C,AB=8,OC=3,則⊙O的半徑長為(   )
A.B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一條弦把圓弧分成1︰3兩部分,則劣弧所對的圓心角為         。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,點C在AB的延長線上,CD切⊙O于點D,連接AD,若∠A=25°,則∠C =       度.

查看答案和解析>>

同步練習冊答案