精英家教網 > 初中數學 > 題目詳情

【題目】已知,關于的分式方程.

1)當時,求分式方程的解;

2)當時,求為何值時分式方程無解:

3)若,且為正整數,當分式方程的解為整數時,求的值.

【答案】1;(2;(3

【解析】

1)將ab的值代入方程得,解出這個方程,最后進行檢驗即可;

2)把代入方程得,分式方程去分母轉化為整式方程為,由分式方程有增根,得11-2b=0,或(不存在),或求出b的值即可;

3)把代入原方程得,將分式方程化為整式方程求出x的表達式,再根據x是正整數求出b,然后進行檢驗即可.

1)當,時,分式方程為:

解得:

經檢驗:時是原方程的解

2)解:當時,分式方程為:

①若,即時,有:,此方程無解

②若,即時,則

,即,不成立

,即,解得

∴綜上所述,時,原方程無解

3)解:當時,分式方程為:

是正整數

又∵是正整數,是整數.

經檢驗,當時,(不符合題意,舍去)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】ABC是等腰直角三角形,∠ACB=90°,AB=8cm,動點P、Q以2cm/s的速度分別從點A、B同時出發(fā),點P沿AB向終點B運動,點Q沿BA向終點A運動,過點PPDAC于點D,以PD為邊向右側作正方形PDEF,過點QQGAB,交折線BCCA于點G與點C不重合,以QG為邊作等腰直角△QGH,且點G為直角頂點,點CH始終在QG的同側,設正方形PDEF與△QGH重疊部分圖形的面積為Scm2),點P運動的時間為ts)(0<t<4).

(1)當點F在邊QH上時,求t的值.

(2)點正方形PDEF與△QGH重疊部分圖形是四邊形時,求St之間的函數關系式;

(3)當FH所在的直線平行或垂直AB時,直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yax2+bx+c的圖象如圖所示,則下列判斷中錯誤的是

A.圖象的對稱軸是直線x1 B.當x>1時,y隨x的增大而減小

C.一元二次方程ax2+bx+c0的兩個根是-1,3 D.當-1<x<3時,y<0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形和正方形的頂點軸上,頂點軸上,點邊上,反比例函數的圖象經過點、和邊的中點.若,則正方形的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形的邊長為,邊的中點,點在射線上,過,設

(1)求證:;

(2)也是邊中點時,求的值;

(3)若以,,為頂點的三角形也與相似,試求的值;

(4)當點與點重合時,設于點,試判斷的大小關系并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半徑為5的⊙Py軸交于點M(0,﹣4),N(0,﹣10)

(1)求點P的坐標;

(2)將⊙P繞點O順時針方向旋轉90°后得⊙A,交x軸于B、C,求過A、B、C三個點的拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AC是⊙O的直徑,過點BBEAD,垂足為點E,AB平分∠CAE

1)判斷BE與⊙O的位置關系,并說明理由;

2)若∠ACB=30°,O的半徑為4,請求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b的圖象與x軸交于點A,與反比例函數y=(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數圖象上的一點,且∠PBC=∠ABC,求反比例函數和一次函數的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O的半徑為3,A,P兩點在O上,點B在O內,tan∠APB=,AB⊥AP.如果OBOP,那么OB的長為_____

查看答案和解析>>

同步練習冊答案