【題目】已知矩形PMON的邊OMON分別在xy軸上,O為坐標(biāo)原點(diǎn),且點(diǎn)P的坐標(biāo)為(﹣2,3).將矩形PMON沿x軸正方向平移4個(gè)單位,得到矩形P1M1O1N1再將矩形P1M1O1N1繞著點(diǎn)O1旋轉(zhuǎn)90°得到矩形P2M2O2N2.在坐標(biāo)系中畫出矩形P2M2O2N2,并求出直線P1P2的解析式.

【答案】矩形P2M2O2N2見解析;當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,直線P1P2的解析式為:y=﹣x +;當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1逆時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,直線P1P2的解析式為:y5x7.

【解析】

由點(diǎn)P的坐標(biāo)為(﹣23).將矩形PMON沿x軸正方向平移4個(gè)單位,得到矩形P1M1O1N1,得到P1的坐標(biāo)為(2,3).將矩形P1M1O1N1繞著點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,得P2的坐標(biāo)為(7,2);當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1逆時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,得P2的坐標(biāo)為(1,﹣2),然后利用待定系數(shù)法分別求出它們的直線解析式.

解:如圖:

當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2

∵點(diǎn)P的坐標(biāo)為(﹣2,3).將矩形PMON沿x軸正方向平移4個(gè)單位,得到矩形P1M1O1N1,

P1的坐標(biāo)為(2,3),

∵將矩形P1M1O1N1繞著點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2

P2的坐標(biāo)為(7,2),

設(shè)P1P2的解析式為:ykx+b,把P12,3),P27,2)代入得,2k+b3①,7k+b2②,

解由①②組成的方程組得,k=﹣ ,b

所以直線P1P2的解析式為y=﹣x + ;

當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1逆時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2.如圖,

P2的坐標(biāo)為(1,﹣2),

設(shè)P1P2的解析式為:ykx+b,把P12,3),P21,﹣2)代入得,2k+b3①,k+b=﹣2②,

解由①②組成的方程組得,k5b=﹣7

所以直線P1P2的解析式為y5x7;

故答案為:矩形P2M2O2N2見解析;當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,直線P1P2的解析式為:y=﹣x +;當(dāng)將矩形P1M1O1N1繞著點(diǎn)O1逆時(shí)針旋轉(zhuǎn)90°得到矩形P2M2O2N2,直線P1P2的解析式為:y5x7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,點(diǎn)E在邊AD上,連接BE,在BE上取點(diǎn)F,連接AF并延長交BDH,且∠AFE60°,過CCGBD,直線CG、AF交于G

(1)求證:∠FAE=∠EBA;

(2)求證:AHBE

(3)AE3,BH5,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑作O交AB于點(diǎn)D,E為BC的中點(diǎn),連接DE并延長交AC的延長線于點(diǎn)F.

(1)求證:DE是O的切線;

(2)若CF=2,DF=4,求O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)M的坐標(biāo)為(0,2),以M為圓心,以4為半徑的圓與x軸相交于點(diǎn)B、C,與y軸正半軸相交于點(diǎn)AAAEBC,點(diǎn)D為弦BC上一點(diǎn),AEBD,連接ADEC

(1)B、C兩點(diǎn)的坐標(biāo);

(2)求證:ADCE;

(3)若點(diǎn)P是弧BAC上一動(dòng)點(diǎn)(P點(diǎn)與A、B點(diǎn)不重合),過點(diǎn)P的⊙M的切線PGx軸于點(diǎn)G,若△BPG為直角三角形,試求出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O經(jīng)過菱形ABCD的三個(gè)頂點(diǎn)A、C、D,且與AB相切于點(diǎn)A

(1)求證:BC為O的切線;

(2)求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對(duì)角線AC長為6,點(diǎn)E在對(duì)角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cy軸交于點(diǎn)A(0,2),對(duì)稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱軸左側(cè),BC=6.

(1)求此拋物線的解析式.

(2)點(diǎn)Px軸上,直線CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形AEFG均為菱形,且∠EAG=∠ABC

1)如圖1,點(diǎn)G在線段AD上,已知AD5,AG3,且cosABC ,連接AF,BF,求BF的長;

2)如圖2,點(diǎn)G在菱形ABCD內(nèi)部,連接BGDE,若點(diǎn)MDE中點(diǎn),試猜想AMBG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,的半徑為1,A、B兩點(diǎn)坐標(biāo)分別為、已知點(diǎn)P上的一點(diǎn),點(diǎn)Q是線段AB上的一點(diǎn),設(shè)的面積為S,當(dāng)為直角三角形時(shí),S的取值范圍為______

查看答案和解析>>

同步練習(xí)冊(cè)答案