【題目】如圖,直線ABCD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=41,則∠AOF等于( 。

A. B. C. D.

【答案】D

【解析】

先設出∠BOE=α,再表示出∠DOE=αAOD=4α,建立方程求出α,最用利用對頂角,角之間的和差即可.

解:設∠BOE=α,

∵∠AOD:∠BOE=41,

∴∠AOD=4α,

OE平分∠BOD,

∴∠DOE=BOE=α

∴∠AOD+DOE+BOE=180°,

4α+α+α=180°,

α=30°

∴∠AOD=4α=120°,

∴∠BOC=AOD=120°,

OF平分∠COB

∴∠COF=BOC=60°,

∵∠AOC=BOD=2α=60°,

∴∠AOF=AOC+COF=120°,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,在正方形中,、分別是邊上的點,,連接,交于點.求證:

2)如圖②,若點、分別在、的延長線上,且,(1)中的結論是否成立?如果成立,請說明理由;

3)如圖③,在圖②的基礎上連接、、、分別是、、的中點,請直接寫出四邊形的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖△ABC中,BD,CE分別是AC,AB邊上的高,BQAC,點FCE的延長線上,CFAB,求證:AFAQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經調查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】422日是世界地球日,為了增強學生環(huán)保意識,某中學八年級舉行了環(huán)保知識競賽活動,為了了解本次競賽情況,只抽取了部分學生的成績(滿分100分,得分均為正整數(shù))進行統(tǒng)計,請你根據下面還未完成的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:

分組

頻數(shù)

頻率

50.560.5

4

0.08

60.570.5

8

0.16

70.580.5

10

0.20

80.590.5

16

0.32

90.5100.5

a

b

1a   b   ;

2)補全頻數(shù)分布直方圖;

3)該校八年級有500名學生,估計八年級學生中競賽成績高于80分的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=+bx+c的圖象經過A20)、B0,6)兩點.

1)求這個二次函數(shù)的解析式;

2)求當x滿足什么條件時,函數(shù)值大于0?;

3)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=x-3x軸于點B,交y軸于點C,拋物線經過點A(-1,0),BC三點,Fy軸負半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點P,滿足SABC=SPBC,請求出點P的坐標;

(3)D是直線BC的下方的拋物線上的一個動點,過D點作DEy軸,交直線BC于點E,①當四邊形CDEF為平行四邊形時,求D點的坐標;

②是否存在點D,使CEDF互相垂直平分?若存在,請求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點DDEACE

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是用大小相等的小正方形按一定規(guī)律拼成的,則第10個圖形是_________個小正方形,第n 個圖形是___________個小正方形.

查看答案和解析>>

同步練習冊答案