如圖,l1、l2、l3、l4是同一平面內(nèi)的四條平行直線,且每相鄰的兩條平行直線間的距離為h,面積是25的正方形ABCD的四個頂點(diǎn)分別在這四條直線上,那么h的值是______.
∵l1、l2、l3、l4是同一平面內(nèi)的四條平行直線,且每相鄰的兩條平行直線間的距離為h,
∴設(shè)AE=x,則AD=2x,BE=
5
x,
S△ABE=
1
2
x•2x=
1
2
5
x•h,
解得x=
5
2
h,
AD=2x=
5
h,
∴S正方形ABCD=5h2,
∵正方形ABCD面積是25,
∴5h2=25,
∴h=
5
,
故答案為:
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABDE的面積是169平方厘米,正方形CAFG面積是144平方厘米,正方形BCHK的面積是25平方厘米,則陰影四邊形AGHP的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方形ABCD中,E為AD邊上的中點(diǎn),過A作AF⊥BE,交CD邊于F.求證:點(diǎn)F是CD邊的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時暫停運(yùn)動,設(shè)△ABC的運(yùn)動時間為t秒(t≥0).

(1)在整個運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時,作∠ABE的角平分線BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒2
3
個單位長度開始移動,△ABC停止運(yùn)動時,Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)G是正方形ABCD邊AB的中點(diǎn),點(diǎn)E是射線BC上一點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F,連接EG.

(1)若E為BC的中點(diǎn)(如圖1)
①求證:△AEG≌△EFC;
②連接DF,DB,求證:DF⊥BD;
(2)若E是BC延長線上一點(diǎn)(如圖2),則線段CF和BE之間存在怎樣的數(shù)量關(guān)系,給出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中錯誤的是( 。
A.一組對邊平行且一組對角相等的四邊形是平行四邊形
B.對角線互相垂直的平行四邊形是正方形
C.四個角相等的四邊形是矩形
D.每組鄰邊都相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在正方形ABCD的邊BC的延長線上取一點(diǎn)E,使EC=AC,連接AE交CD于F,那么∠AFC等于______°;若AB=2,那么△ACE的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,CE⊥DF.若CE=10cm,則DF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正方形的對角線長為a,那么它的對角線的交點(diǎn)到它的邊的距離為______.

查看答案和解析>>

同步練習(xí)冊答案