如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,.
(1)求的度數(shù);
(2)求證:AE是⊙O的切線。
【解析】
試題分析:(1)∠ABC與∠D都是弧AC所對的圓周角,所以∠ABC=∠D=60°.
(2)根據(jù)角的關(guān)系證得∠BAE=90°,即BA⊥AE,根據(jù)切線的判定定理可得證.
試題解析:(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,
∴AE是⊙O的切線;
(3)如圖,連接OC,
∴OB=OC,∠ABC=60°,
∴△OBC是等邊三角形,∵OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
考點(diǎn):1.圓的切線的判定.2.同弧所對的圓周角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BE | AD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
EB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com