【題目】如圖,在ABC中,AB=AC,O為BC的中點(diǎn),AC與半圓O相切于點(diǎn)D.

(1)求證:AB是半圓O所在圓的切線;

(2)若cosABC=,AB=12,求半圓O所在圓的半徑.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

試題分析:(1)根據(jù)等腰三角形的性質(zhì),可得OA,根據(jù)角平分線的性質(zhì),可得OE,根據(jù)切線的判定,可得答案;(2)根據(jù)銳角三角函數(shù),可得OB的長(zhǎng),根據(jù)勾股定理,可得OA的長(zhǎng),根據(jù)三角形的面積,可得OE的長(zhǎng).

試題解析:(1)證明:如圖1,

作ODAC于D,OEAB于E,

AB=AC,O為BC的中點(diǎn),

∴∠CAO=BAO.

ODAC于D,OEAB于E,

OD=OE,

AB經(jīng)過(guò)圓O半徑的外端,

AB是半圓O所在圓的切線;

(2)cosABC=,AB=12,得OB=8.

由勾股定理,得AO=4

由三角形的面積,得SAOB=ABOE=OBAO,

OE==,

即半圓O所在圓的半徑是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,P2,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1)100×5+(﹣2)3÷8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四個(gè)足球與足球規(guī)定質(zhì)量偏差如下:﹣3,+5,+10,﹣20(超過(guò)為正,不足為負(fù)).質(zhì)量相對(duì)最合規(guī)定的是( 。

A. +10 B. ﹣20 C. ﹣3 D. +5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣12等于( 。
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了一個(gè)班級(jí)的學(xué)生,對(duì)他們一周的讀書(shū)時(shí)間進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)如下表所示:

讀書(shū)時(shí)間(小時(shí))

7

8

9

10

11

學(xué)生人數(shù)

6

10

9

8

7

則該班學(xué)生一周讀書(shū)時(shí)間的中位數(shù)和眾數(shù)分別是(  )

A. 9,8 B. 9,9 C. 9.5,9 D. 9.5,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算22+(1)°的結(jié)果是( ).

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a,b滿足a2-a-6=0,b2-b-6=0(ab),則a+b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則點(diǎn)D的坐標(biāo)是( )
A.(﹣2,1)
B.(﹣2,﹣1)
C.(﹣1,﹣2)
D.(﹣1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案