【題目】如圖,某項研究表明,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.如表是測得的指距與身高的一組數(shù)據(jù):

指距dcm

19

20

21

身高hcm

151

160

169

1)你能確定身高h與指距d之間的函數(shù)關(guān)系式嗎?

2)若某人的身高為196cm,一般情況下他的指距應(yīng)是多少?

【答案】1)身高h與指距d之間的函數(shù)關(guān)系式為h=9d-20;(2)一般情況下他的指距應(yīng)是24cm

【解析】

1)根據(jù)題意設(shè)hd之間的函數(shù)關(guān)系式為:h=kd+b,從表格中取兩組數(shù)據(jù),利用待定系數(shù)法,求得函數(shù)關(guān)系式即可;

2)把h=196代入函數(shù)解析式即可求得.

解:(1)設(shè)hd之間的函數(shù)關(guān)系式為:h=kd+b

d=20,h=160d=21,h=169,分別代入得

解得,

h=9d-20,

d=19時,h=9×19-20=151,符合題意,

∴身高h與指距d之間的函數(shù)關(guān)系式為:h=9d-20

2)當h=196時,196=9d-20,解得d=24

故一般情況下他的指距應(yīng)是24cm

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1△ABC為等腰直角三角形,∠ACB90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于45°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點D.在三角板另一直角邊上取一點F,使CFCD,線段AB上取點E,使∠DCE45°,連接AF,EF.請?zhí)骄拷Y(jié)果:

直接寫出∠EAF的度數(shù)=__________度;若旋轉(zhuǎn)角∠BCDα°,則∠AEF____________度(可以用含α的代數(shù)式表示);

②DEEF相等嗎?請說明理由;

(類比探究)

2)如圖2△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于30°).旋轉(zhuǎn)后三角板的一直角邊與AB交于點D.在三角板斜邊上取一點F,使CFCD,線段AB上取點E,使∠DCE30°,連接AF,EF

直接寫出∠EAF的度數(shù)=___________度;

AE1,BD2,求線段DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l:y=﹣x+6y軸于點A,與x軸交于點B,過A、B兩點的拋物線mx軸的另一個交點為C,(CB的左邊),如果BC=5,求拋物線m的解析式,并根據(jù)函數(shù)圖像指出當m的函數(shù)值大于0的函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx的一次函數(shù),且當x=-4y=9;當x=6時,y=-1

1)求這個一次函數(shù)的解析式和自變量x的取值范圍;

2)當x=-時,函數(shù)y的值;

3)當y=7時,自變量x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C、D是圓上兩點,且OD∥AC,ODBC交于點E.

1)求證:EBC的中點;

2)若BC8,DE3,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】前年甲廠全年的產(chǎn)值比乙廠多12萬元,在其后的兩年內(nèi),兩個廠的產(chǎn)值都有所增加:甲廠每年的產(chǎn)值比上一年遞增10萬元,而乙廠每年的產(chǎn)值比上一年增加相同的百分數(shù).去年甲廠全年的產(chǎn)值仍比乙廠多6萬元,而今年甲廠全年產(chǎn)值反而比乙廠少3.2萬元.前年甲乙兩車全年的產(chǎn)值分別是多少?乙廠每年的產(chǎn)值遞增的百分數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解

在平面直角坐標系中,兩條直線

①當時,,且;②當時,

類比應(yīng)用

1)已知直線,若直線與直線平行,且經(jīng)過點,試求直線的表達式;

拓展提升

2)如圖,在平面直角坐標系中,的頂點坐標分別為:,試求出邊上的高所在直線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,給出下列結(jié)論 b24ac>0; 2ab<0; 4a-2bc=0; abc= -123.其中正確的是【

(A) ①② (B) ②③ (C) ③④ (D)①④

查看答案和解析>>

同步練習冊答案