如圖,在△ABC中,AB=AC=
5
,BC=2,以AB為直徑的⊙O分別交AC、BC兩邊于點D、E,則△CDE的面積為( 。
A.
2
5
B.
4
5
C.
5
5
D.
2
5
5

連接AE,則AE⊥BC.
又∵AB=AC,
∴E是BC的中點,即BE=EC=1.
Rt△ABE中,AB=
5
,BE=1,
由勾股定理得:AE=2.
∴S△ABC=
1
2
BC•AE=2.
∵四邊形ABED內(nèi)接于⊙O,
∴∠CDE=∠CBA,∠CED=∠CAB,
∴△CDE△CBA,
∴S△CDE:S△ABC=CE2:AC2=1:5.
∴S△CDE=
1
5
S△ABC=
2
5

故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,D是
AC
的中點,∠B=40°,則∠A等于( 。
A.60°B.50°C.80°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

同一個圓的內(nèi)接正方形與內(nèi)接正六邊形邊長之比為(  )
A.2:3B.
3
2
C.
2
:2
D.
2
:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個正多邊形是______邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖是一種正六邊形瓷磚的圖案,其中的三條圓弧的圓心是正六邊形的頂點,半徑是正六邊形的邊長,若該正六邊形的邊長為6,則圖案中的陰影部分的面積是( 。
A.24π-9
3
B.12π-18
3
C.18π-27
3
D.36π-54
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O過正方形ABCD頂點A、B,且與CD相切,若正方形邊長為2,則圓的半徑為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

1993年版人民幣的一角硬幣正面圖案中有一個正九邊形,如果這個正九邊形的半徑是R,那么它的邊長是( 。
A.Rsin20°B.Rsin40°C.2Rsin20°D.2Rsin40°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB、CD是兩條相互垂直的公路,設計時想在拐彎處用一段圓弧形灣道把它們連接起來(圓弧在A、C兩點處分別與道路相切),測得AC=60米,∠ACP=45度.
(1)在圖中畫出圓弧形彎道的示意圖;
(2)求彎道部分的長.(結(jié)果保留四個有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

畫一個半徑為2cm的正六邊形.

查看答案和解析>>

同步練習冊答案