【題目】如圖,矩形ABCD中,EAC的中點,點A、Bx軸上.若函數(shù)(x>0) 的圖像過D、E兩點,則矩形ABCD的面積為________

【答案】12

【解析】EEFABF,由三角形中位線定理可得AD=2EF,設(shè)點D的橫坐標為m,D點坐標為(m,),得出AD=,即可得出EF=,根據(jù)圖象上的坐標特征得出E的橫坐標為2m,繼而得出AB=2m,然后根據(jù)矩形的面積公式即可求得.

EEFABF,

∵點E是矩形ABCD對角線的交點,

AE=CE,

EFABC的中位線,

AD=2EF,

設(shè)點D的橫坐標為m,且點D在反比例函數(shù)y=(x>0)上,

D點坐標為(m,),

AD=,

EF=

F(2m,),

AF=m,

AB=2m,

∴矩形ABCD的面積=2m=12,

故答案為12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績繪制了如圖所示的折線統(tǒng)計圖.

根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應(yīng)推薦( 。

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)嘉興市垃圾分類工作的號召,大力倡導(dǎo)低碳生活,保護我們的生存環(huán)境.某校按抽樣規(guī)則抽取了部分學(xué)生進行垃圾分類的問卷調(diào)查(問卷內(nèi)容如圖1),答題情況如圖2所示.

(1)參與本次問卷調(diào)查的學(xué)生共有多少人?

(2)若該校共有800名學(xué)生,則估計該校全體學(xué)生中對垃圾分類非常清楚(全對”)的人數(shù)有多少?

(3)為講一步提高學(xué)生對垃圾分類的認識,學(xué)校加大了宣傳,一個月后按同樣的抽樣規(guī)則抽取與第一次樣本容量相等的學(xué)生進行第二次垃圾分類的問卷調(diào)查,答題情況如圖3所示.求前后兩次調(diào)查中答全對人數(shù)的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雯雯開了一家品牌手機體驗店,想在體驗區(qū)(1陰影部分)擺放圖2所示的正六邊形桌子若干張.體驗店平面圖是長9米、寬7米的矩形,通道寬2米,桌子的邊長為1米;擺放時要求桌子至少離墻1米,且有邊與墻平行,桌子之間的最小距離至少1米,則體驗區(qū)可以擺放桌子(

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN,點B、D分別在AN、AM上.

(1)如圖1,若∠ABC=∠ADC=90°,請你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;

(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ABCD中,EAD邊上一點,AD=4,CD=3,ED=,A=45.點P,Q分別是BC,CD邊上的動點,且始終保持∠EPQ=45°.將 CPQ沿它的一條邊翻折,當(dāng)翻折前后兩個三角形組成的四邊形為菱形時,線段BP的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示.已知箱體長AB=50cm,拉桿的伸長距離最大時可達35cm,點A,B,C在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點D.在拉桿伸長至最大的情況下,當(dāng)點B距離水平地面38cm時,點C到水平地面的距離CE為59cm.

設(shè)AFMN

(1)求⊙A的半徑長;

(2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服.某人將手自然下垂在C端拉旅行箱時,CE為80cm,=64°.求此時拉桿BC的伸長距離.(精確到1cm,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購買了一套一居室,他準備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問題:

(1)用含 的代數(shù)式表示地面的總面積 ;

(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費用為 元,那么小王鋪地磚的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為線段AB上的兩點,M,N分別是線段AC,BD的中點.

(1)如果CD=5cm,MN=8cm,求AB的長;

(2)如果AB=a,MN=b,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案