【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=上,第二象限的點(diǎn)B在反比例函數(shù)y=上,且OAOBcosA=,則k的值為______

【答案】-4

【解析】

作AC⊥x軸于點(diǎn)C,作BD⊥x軸于點(diǎn)D,易證△OBD∽△AOC,則面積的比等于相似比的平方,即tanA的平方,然后根據(jù)反比例函數(shù)中比例系數(shù)k的幾何意義即可求解.

解:作AC⊥x軸于點(diǎn)C,作BD⊥x軸于點(diǎn)D

則∠BDO=∠ACO=90°,

則∠BOD+∠OBD=90°,

∵OA⊥OB,cosA=,

∴∠BOD+∠AOC=90°tanA=,

∴∠BOD=∠OAC,

∴△OBD∽△AOC,

=(2=tanA2=2,

又∵SAOC=×2=1

∴SOBD=2,

∴k=-4

故答案為:-4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩個(gè)轉(zhuǎn)盤(pán)分別被分成了等份與等份,每份內(nèi)均標(biāo)有數(shù)字.分別旋轉(zhuǎn)這兩個(gè)轉(zhuǎn)盤(pán),將轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域內(nèi)的兩數(shù)相乘.

1)請(qǐng)將所有可能出現(xiàn)的結(jié)果填入下表:

1

2

3

4

1

   

   

   

   

2

   

   

   

   

3

   

   

   

   

2)積為的概率為   ;積為偶數(shù)的概率為   

3)從個(gè)整數(shù)中,隨機(jī)選取個(gè)整數(shù),該數(shù)不是(1)中所填數(shù)字的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物CD96米,它的前面有一座小山,其斜坡AB的坡度為.為了測(cè)量山頂A的高度,在建筑物頂端D處測(cè)得山頂A和坡底B的俯角分別為αβ.已知,,求山頂A的高度AE(CB、E在同一水平面上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,點(diǎn)上,交于點(diǎn),若,則( )

A. 2:3B. 4:9C. 4:25D. 9:25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線(xiàn)x=對(duì)稱(chēng)軸的拋物線(xiàn)y=ax2+bx+c與直線(xiàn)l:y=kx+m(k>0)交于A(1,1),B兩點(diǎn),與y軸交于C(0,5),直線(xiàn)ly軸交于點(diǎn)D.

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)設(shè)直線(xiàn)l與拋物線(xiàn)的對(duì)稱(chēng)軸的交點(diǎn)為F,G是拋物線(xiàn)上位于對(duì)稱(chēng)軸右側(cè)的一點(diǎn),若,且BCGBCD面積相等,求點(diǎn)G的坐標(biāo);

(3)若在x軸上有且僅有一點(diǎn)P,使∠APB=90°,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD、CEFG都是正方形,點(diǎn)G在線(xiàn)段CD上,連接BGDEFG相交于點(diǎn)O.設(shè)ABa,CGbab).下列結(jié)論:①△BCG≌△DCE;②BGDE;③;④(ab2SEFOb2SDGO.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)EAD的中點(diǎn),連結(jié)BE,將ABE沿BE翻折,點(diǎn)A恰好落在AC上的點(diǎn)A處,若AB2,則AC的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:是等腰直角三角形,,將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)得到,記旋轉(zhuǎn)角為,當(dāng)時(shí),作,垂足為,交于點(diǎn)

1)如圖1,當(dāng)時(shí),作的平分線(xiàn)于點(diǎn).

①寫(xiě)出旋轉(zhuǎn)角的度數(shù);②求證:;

2)如圖2,在(1)的條件下,設(shè)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接,若,求線(xiàn)段的最小值.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案