(2010•豐臺區(qū)一模)直線CD經(jīng)過∠BCA的頂點C,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則EF______|BE-AF|(填“>”,“<”或“=”號);
②如圖2,若0°<∠BCA<180°,若使①中的結(jié)論仍然成立,則∠α與∠BCA應滿足的關(guān)系是______;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)骄縀F、與BE、AF三條線段的數(shù)量關(guān)系,并給予證明.
【答案】分析:(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF,EC=AF;又因為EF=CF-CE,所以EF=|BE-AF|;
②只有滿足△BEC≌△CDA,才有①中的結(jié)論,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形內(nèi)角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.
(2)只要通過條件證明△BEC≌△CFA(可通過ASA證得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.
解答:解:(1)①∵∠BCA=90°,∠α=90°,
∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC與△CDA中,
,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
②∠α與∠BCA應滿足的關(guān)系是∠α+∠BCA=180°,理由為:
∵∠α+∠BCA=180°,
∴∠α+∠BCE+∠FCA=180°,
∵∠α+∠BCE+∠CBE=180°(三角形內(nèi)角和等于180°),
∴∠CBE=∠ACD,
又∵∠BEC=∠CFA,CA=CB,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
則∠α與∠BCA應滿足的關(guān)系是∠α+∠BCA=180°;

(2)探究結(jié)論:EF=BE+AF
證明:∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°
又∵∠BCA=∠α=∠CFA,
∴∠1=∠3;
又∵∠BEC=∠CFA=∠α,CB=CA,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∴EF=EC+CF=BE+AF.
點評:本題主要考查全等三角形全等的判定,涉及到三角形內(nèi)角和定理,線段比較長短等知識點.同學們要仔細閱讀題意方能解題,屬于一道較復雜的基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2010•豐臺區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無論m為任何實數(shù),該二次函數(shù)的圖象與x軸都有兩個交點;
(2)當該二次函數(shù)的圖象經(jīng)過點(3,6)時,求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個單位長度后與(2)中的拋物線交于A、B兩點(點A在點B的左邊),一個動點P自A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•豐臺區(qū)一模)已知拋物線y=x2-x-2.
(1)求拋物線頂點M的坐標;
(2)若拋物線與x軸的交點分別為點A、B(點A在點B的左邊),與y軸交于點C,點N為線段BM上的一點,過點N作x軸的垂線,垂足為點Q.當點N在線段BM上運動時(點N不與點B,點M重合),設(shè)NQ的長為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使△PAC為直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•豐臺區(qū)一模)已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無論m為任何實數(shù),該二次函數(shù)的圖象與x軸都有兩個交點;
(2)當該二次函數(shù)的圖象經(jīng)過點(3,6)時,求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個單位長度后與(2)中的拋物線交于A、B兩點(點A在點B的左邊),一個動點P自A點出發(fā),先到達拋物線的對稱軸上的某點E,再到達x軸上的某點F,最后運動到點B.求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•豐臺區(qū)一模)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象相交于A、B兩點.
(1)求出這兩個函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象回答:當自變量x的取值范圍滿足什么條件時,y1<y2?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•豐臺區(qū)一模)解方程:x2+2x-2=0

查看答案和解析>>

同步練習冊答案