【題目】如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,點(diǎn)是邊的中點(diǎn),點(diǎn)是對角線上的動(dòng)點(diǎn),連接,過點(diǎn)作交正方形的邊于點(diǎn);
(1)當(dāng)點(diǎn)在邊上時(shí),①判斷與的數(shù)量關(guān)系;
②當(dāng)時(shí),判斷點(diǎn)的位置;
(2)若正方形的邊長為2,請直接寫出點(diǎn)在邊上時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐與探究
如圖,在平面直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),點(diǎn)坐標(biāo)為。直線與直線相交于點(diǎn),點(diǎn)的橫坐標(biāo)為1。
(1)求直線的解析式;
(2)若點(diǎn)是軸上一點(diǎn),且的面積是面積的,求點(diǎn)的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分組合作學(xué)習(xí)”已成為推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)圖如下:
請結(jié)合圖中信息解答下列問題:
(1)求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計(jì)圖;
(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對應(yīng)扇形的圓心角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
材料1:數(shù)學(xué)上有一種根號(hào)內(nèi)又帶根號(hào)的數(shù),它們能通過完全平方式及二次根式的性質(zhì)化去一層(或多層)根號(hào).如: ;
材料2: 配方法是初中數(shù)學(xué)思想方法中的一種重要的解題方法。配方法的最終目的就是配成完全平方式,利用完全平方式來解決問題。它的應(yīng)用非常廣泛,在解方程、求最值、證明等式、化簡根式、因式分解等方面都經(jīng)常用到。
如:
∵,∴即
∴的最小值為1.
根據(jù)以上材料解決下列問題:
(1)填空:=________________;=______________;
(2)求的最小值;
(3)已知,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:① 平方等于64的數(shù)是8;② 若a,b互為相反數(shù),ab≠0,則;③ 若,則的值為負(fù)數(shù);④ 若ab≠0,則的取值在0,1,2,-2這四個(gè)數(shù)中,不可取的值是0.正確的個(gè)數(shù)為( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將△ABC沿BC方向平移,使點(diǎn)B移到點(diǎn)C,得到△DCE.
(1)求證:△ACD≌△EDC;
(2)請?zhí)骄?/span>△BDE的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com