【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,點(diǎn)D在CE上,且∠A=120°,B,C,G三點(diǎn)在同一直線上,則BD與CF的位置關(guān)系是_____;△BDF的面積是_____.
【答案】平行
【解析】
由菱形的性質(zhì)易求∠DBC=∠FCG=30°,進(jìn)而證明BD∥CF;設(shè)BF交CE于點(diǎn)H,根據(jù)菱形的對(duì)邊平行,利用相似三角形對(duì)應(yīng)邊成比例列式求出CH,然后求出DH以及點(diǎn)B到CD的距離和點(diǎn)G到CE的距離,最后根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得解.
解:∵四邊形ABCD和四邊形ECGF是菱形,
∴AB∥CE,
∵∠A=120°,
∴∠ABC=∠ECG=60°,
∴∠DBC=∠FCG=30°,
∴BD∥CF;
如圖,設(shè)BF交CE于點(diǎn)H,
∵CE∥GF,
∴△BCH∽△BGF,
∴=,即=,
解得:CH=1.2,
∴DH=CD﹣CH=2﹣1.2=0.8,
∵∠A=120°,∠ABC=∠ECG=60°,
∴點(diǎn)B到CD的距離為2×=,點(diǎn)G到CE的距離為3×=,
∴陰影部分的面積=.
故答案為:平行;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長線交于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若BE=3,CE=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的動(dòng)點(diǎn),且滿足S△PAO=2S△PCO,求出P點(diǎn)的坐標(biāo);
(3)連接BC,點(diǎn)E是x軸一動(dòng)點(diǎn),點(diǎn)F是拋物線上一動(dòng)點(diǎn),若以B、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C.
(1)求證:BE=CE;
(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N,若AB=2.(如圖2)
①求證:四邊形EMBN的面積為定值;
②設(shè)BM=x,△EMN面積為S,求S最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線l:y=(x>0)過點(diǎn)A(a,b),B(2,1)(0<a<2);過點(diǎn)A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當(dāng)△ABC的面積為2時(shí),求點(diǎn)A的坐標(biāo);
(3)點(diǎn)P為l上一段曲線AB(包括A,B兩點(diǎn))的動(dòng)點(diǎn),直線l1:y=mx+1過點(diǎn)P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點(diǎn),請(qǐng)直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),連接PQ,將線段PQ繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)90°得到線段QE,以PQ、QE為邊作正方形PQEF.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒(t>0)
(1)點(diǎn)P到邊AB的距離為______(用含t的代數(shù)式表示)
(2)當(dāng)PQ∥BC時(shí),求t的值
(3)連接BE,設(shè)△BEQ的面積為S,求S與t之間的函數(shù)關(guān)系式
(4)當(dāng)E、F兩點(diǎn)中只有一個(gè)點(diǎn)在△ABC的內(nèi)部時(shí),直接寫出t的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的方格紙中,畫出了一個(gè)“小老鼠”的圖案,已知每個(gè)小正方形的邊長為1
(1)在上面的方格紙中作出“小老鼠”關(guān)于直線DE對(duì)稱的圖案(只畫圖,不寫作法).
(2)以G為原點(diǎn),GE所在直線為x軸,GH所在直線為y軸,小正方形的邊長為單位長度建立直角坐標(biāo)系,問:是否存在以點(diǎn)Q為頂點(diǎn),且過點(diǎn)H和E的拋物線,并通過計(jì)算說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=12,CE=3時(shí),求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com