【題目】四張小卡片上分別寫有數(shù)字1、2、3、4。它們除數(shù)字外沒有任何區(qū)別,現(xiàn)將它們放在盒子里攪勻.
(1)隨機(jī)地從盒子里抽取一張,求抽到數(shù)字2的概率.
(2)隨機(jī)地從盒子里抽取一張,記下數(shù)字后放回再抽取第二張。請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求抽到的數(shù)字之和為5的概率.
【答案】(1);(2).
【解析】試題分析: (1)隨機(jī)地從盒子里抽取一張,共有4種等可能的結(jié)果,而抽到數(shù)字2的占1種,利用概率公式即可求得抽到數(shù)字2的概率;
(2)利用列表法展示所有16種等可能的結(jié)果,其中抽到的數(shù)字之和為5占4種,利用概率公式即可求得抽到的數(shù)字之和為5的概率.
試題解析:
解:(1)四張卡片中,只有1張寫有數(shù)字2,故隨機(jī)地從盒子里抽取一張,求抽到數(shù)字2的概率為.
(2)根據(jù)題意列表,如圖所示.由圖可知,共有16種等可能的結(jié)果,數(shù)字之和為5的結(jié)果有4種,故數(shù)字之和為5的概率為.
結(jié)果 | 1 | 2 | 3 | 4 |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩贏卡片游戲,工具是一個如圖所示的轉(zhuǎn)盤(等分成8份),游戲規(guī)定:自由轉(zhuǎn)動的轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后指針指向字母“A”,則甲輸給乙2張卡片,若指針指向字母“B”,則乙輸給甲3張卡片;若指針指向字母“C”,則乙輸給甲1張卡片(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止).
(1)轉(zhuǎn)動一次轉(zhuǎn)盤,求甲贏取1張卡片的概率;
(2)轉(zhuǎn)動一次轉(zhuǎn)盤,求乙贏取2張卡片的概率;
(3)轉(zhuǎn)動一次轉(zhuǎn)盤,求甲贏取卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次七年級1200名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了100名學(xué)生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:
組別 | 成績分組 | 頻數(shù) | 頻率 |
A | 35≤x<38 | 3 | 0.03 |
B | 38≤x<41 | a | 0.12 |
C | 41≤x<44 | 20 | 0.20 |
D | 44≤x<47 | 35 | 0.35 |
E | 47≤x≤50 | 30 | b |
請根據(jù)所提供的信息解答下列問題:
(1)頻率統(tǒng)計表中a= ,b= ;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計圖中D組的圓心角是 度;
(4)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次大賽中成績不低于41分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,聯(lián)結(jié)DF,點M,N分別為DF,EF的中點,聯(lián)結(jié)MA,MN.
(1)如圖1,點E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫出結(jié)論;
(2)如圖2,點E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D是AB邊上的一點,DM⊥AB,且DM=AC,過點M作ME∥BC交AB于點E,
(1)試說明△ABC與△MED全等;
(2)若∠M=35°,求∠B的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點O,A1;
將C1繞點A1旋轉(zhuǎn)180°得C2,交x 軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x 軸于點A3;
……
如此進(jìn)行下去,直至得C13.
若P(1,m)在C1上,則m =_________.
若P(37,n)在第13段拋物線C13上,則n =_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
當(dāng)AP=AD時(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當(dāng)AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系式并證明;
(2)當(dāng)AP=AD時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(3)一般地,當(dāng)AP=AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系為: ;
(4)當(dāng)AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com