【題目】如圖,在平面直角坐標系中,拋物線與直線交于點和點,與軸交于點,且點在軸上,為拋物線的頂點.
(1)求拋物線的解析式及頂點的坐標;
(2)若是第一象限內(nèi)拋物線上的一個運動的點,點的橫坐標為,過點作軸,交直線于點,求當為何值時,線段的長最大?最大值是多少?并直接寫出此時點的坐標;
(3)在(2)的條件下,當的長取得最大值時,在坐標平面內(nèi)是否存在點,使以為頂點的四邊形是平行四邊形?若存在,請直接寫出符合條件的點的坐標:若不存在,請說明理由.
【答案】(1);點的坐標為;(2)當時,的長最大,最大值是,;(3)存在,,,
【解析】
(1)根據(jù)直線方程得出A,C兩點的坐標,再代入拋物線,即可求出解析式,再對解析式進行配方即可得出D點的坐標;
(2)用m表示出PQ的坐標,根據(jù)題意列出關(guān)于m的函數(shù)解析式,求解即可;
(3)需要分類討論:①以PQ為邊時,②以PQ為對角線時.
解:(1)由直線可知,,
把點和點代入中,得
解得:,
,
又∵,
點的坐標為;
(2)將y=0代入拋物線,
得B點坐標為(3,0),
∵有(1)得C點的坐標為,
∴可知的解析式是,
∴設,
當時,的長最大,最大值是,
;
(3)存在,在(2)的條件下P點的坐標為,Q點的坐標為,
①以PQ為邊時,則AH∥PQ,即H點與A點的橫坐標一致時,能讓以為頂點的四邊形是平行四邊形,此時根據(jù)設H點的坐標為(-1,a),
根據(jù)平行四邊形的性質(zhì)可得│AH│=│PQ│,即│a│-0=,
解得a=±,
∴此時H的坐標有兩種情況:,,
②以PQ為對角線時,則有AQ∥PH,能讓以為頂點的四邊形是平行四邊形,
此時設H點的坐標為(a,b),
根據(jù)圖象和平行四邊形的性質(zhì)可得,
解得,
∴此時H的坐標為:,
綜上符合題意的H點的坐標有:,,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6,將△ABC繞點C順時針旋轉(zhuǎn)得到△MCN,點D、E分別為AB、MN的中點,若點E剛好落在邊BC上,則sin∠DEC=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在的方格紙中,每個小正方形的邊長均為1,線段的端點、均在小正方形的頂點上.
(1)在圖中畫出以為斜邊的直角三角形,點在小正方形頂點上,且;
(2)在圖中畫出等腰三角形,點在小正方形的頂點上,且的面積為;
(3)連接,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,點在點的左側(cè),拋物線與軸正半軸交于點,分別連接、,則有,,
(1)求拋物線的函數(shù)表達式;
(2)設為拋物線的頂點,點為線段上任意一點,過點作軸的垂線分別交直線及拋物線于點、點,當是銳角三角形時,求的取值范圍.
(3)在(2)的前提下,設,求 的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點 B,與反比例函數(shù) y=(k>0)圖象交于點 D 和點 E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點 P 為線段 BE 上的一個動點,過點 P 作 x 軸的平行線,當△CDE 被這條平行線分成面積相等的兩部分時,求點 P 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參照學習函數(shù)的過程與方法,探究函數(shù)y=的圖象與性質(zhì).
因為y=,即y=﹣+1,所以我們對比函數(shù)y=﹣來探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描點:在平面直角坐標系中,以自變量x的取值為橫坐標,以y=相應的函數(shù)值為縱坐標,描出相應的點,如圖所示:
(1)請把y軸左邊各點和右邊各點,分別用一條光滑曲線順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當x<0時,y隨x的增大而 ;(填“增大”或“減小”)
②y=的圖象是由y=﹣的圖象向 平移 個單位而得到;
③圖象關(guān)于點 中心對稱.(填點的坐標)
(3)設A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點,且x1+x2=0,試求y1+y2+3的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】彈簧是一種利用彈性來工作的機械零件,用彈性材料制成的零件在外力作用下發(fā)生形變,除去外力后又恢復原狀.某班同學在探究彈簧的長度與所受外力的變化關(guān)系時,通過實驗記錄得到的數(shù)據(jù)如下表:
砝碼的質(zhì)量x(克) | 0 | 50 | 100 | 150 | 200 | 250 | 300 | 400 | 500 |
指針的位置y(cm) | 2 | 3 | 4 | 5 | 6 | 7 | 7.5 | 7.5 | 7.5 |
小騰根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究,下面是小騰的探究過程,請補充完整.
(1)根據(jù)上述表格在平面直角坐標系中補全該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①當x=0時,y= ,它的實際意義是 ;
②當指針的位置y不變時,砝碼的質(zhì)量x的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com