【題目】如圖所示,兩條寬度都為2cm的紙條交叉重疊放在一起,且它們的交角為α,則它們重疊部分(圖中陰影部分)的面積為________.
【答案】cm2
【解析】
首先過C作CE⊥AB,CF⊥AD,垂足為E,F,證明△CEB≌△CFD,從而證明四邊形ABCD是菱形,再利用三角函數(shù)算出BC的長(zhǎng),最后根據(jù)菱形的面積公式算出重疊部分的面積即可.
解:過C作CE⊥AB,CF⊥AD,垂足為E,F,
∴∠CEB=∠CFD=90°,
∵AD∥CB,AB∥CD,
∴四邊形ABCD是平行四邊形,
∵紙條寬度都為2cm,
∴CE=CF=2cm,
在△CEB和△CFD中
,
∴△CEB≌△CFD(AAS),
∴BC=CD,
∴四邊形ABCD是菱形.
∴BC=AB,
在Rt△CEB中,
BC==,
∴BC=AB=,
∴重疊部分(圖中陰影部分)的面積為:AB×CE=×2=cm2.
故答案為:cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鳳城商場(chǎng)經(jīng)銷一種高檔水果,售價(jià)為每千克50元
(1)連續(xù)兩次降價(jià)后售價(jià)為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知這種水果的進(jìn)價(jià)為每千克40元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),若每千克漲價(jià)1元,日銷售量將減少20千克,每千克應(yīng)漲價(jià)多少元才能使每天獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)I是△ABC的內(nèi)心,AI的延長(zhǎng)線交邊BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E.
(1)求證:IE=BE;
(2)若IE=4,AE=8,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在國(guó)家政策的宏觀調(diào)控下,某市的商品房成交均價(jià)由今年3月份的14 000元/m2下降到5月份的12 600元/m2.
(1)問4,5兩月平均每月降價(jià)的百分率約是多少?(參考數(shù)據(jù):≈0.95)
(2)如果房?jī)r(jià)繼續(xù)跌落,按此降價(jià)的百分率,你預(yù)測(cè)到7月份該市的商品房成交均價(jià)是否會(huì)跌跛10 000元/m2?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小敏、小亮從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為30°和60°,A,B兩地相距100 m.當(dāng)氣球沿與BA平行地方向飄移10 s后到達(dá)C′處時(shí),在A處測(cè)得氣球的仰角為45°.
(1)求氣球的高度(保留根式);
(2)求氣球飄移的平均速度(保留根式).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過點(diǎn)D.
(I)求∠1的大。
(Ⅱ)求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com