(2008•濰坊)如圖,梯形ABCD中,AD∥BC,AD=AB,BC=BD,∠A=100°,則∠C=( )

A.80°
B.70°
C.75°
D.60°
【答案】分析:先根據(jù)AD=AB求出∠ADB的度數(shù),也就是∠DBC的度數(shù),再根據(jù)BC=BD,即可求出∠C.
解答:解:∵AB=AD
∴∠ADB=(180°-∠A)=40°
又∵AD∥BC
∴∠DBC=∠ADB=40°
又∵BC=BD
∴∠C=(180°-∠DBC)=(180°-40°)=70°.
故選B.
點評:本題重點考查等邊對等角的性質,平行線的性質及三角形內角和等于180°等重要知識點,本題是一個較簡單的綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省泰安市新泰市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省泰安市中考數(shù)學模擬試卷(2)(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

(2008•濰坊)如圖,圓B切y軸于原點O,過定點A(-,0)作圓B的切線交圓于點P,已知tan∠PAB=,拋物線C經(jīng)過A,P兩點.
(1)求圓B的半徑.
(2)若拋物線C經(jīng)過點B,求其解析式.
(3)設拋物線C交y軸于點M,若三角形APM為直角三角形,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

(2008•濰坊)如圖,AC是圓O的直徑,AC=10厘米,PA,PB是圓O的切線,A,B為切點,過A作AD⊥BP,交BP于D點,連接AB,BC.
(1)求證:△ABC∽△ADB;
(2)若切線AP的長為12厘米,求弦AB的長.

查看答案和解析>>

同步練習冊答案