【題目】學(xué)校組織師生開展植樹造林活動,為了了解全校4000名學(xué)生的情況,隨機抽樣調(diào)查50名學(xué)生的植樹情況,制成如下統(tǒng)計表和條形統(tǒng)計圖(均不完整)。
(1)將統(tǒng)計表和條形統(tǒng)計圖補充完整;
(2)求抽樣的50名學(xué)生植樹數(shù)量的平均數(shù);
(3)根據(jù)抽樣數(shù)據(jù),估計該校4000名學(xué)生的植樹數(shù)量。
【答案】(1)答案見解析;(2)4.6棵;(3)18400棵.
【解析】
試題分析:(1)用總?cè)藬?shù)減去其他小組的人數(shù)即可求得植樹棵樹為5的小組的頻數(shù),除以總?cè)藬?shù)即可得到該組的頻率;
(2)用加權(quán)平均數(shù)計算植樹量的平均數(shù)即可;
(3)用樣本的平均數(shù)估計總體的平均數(shù)即可.
試題解析:1)統(tǒng)計表和條形統(tǒng)計圖補充如下:
植樹量為5棵的人數(shù)為:50-5-20-10=15,頻率為:15÷50=0.3,,
(2)抽樣的50名學(xué)生植樹的平均數(shù)是:=4.6(棵).
(3)∵樣本數(shù)據(jù)的平均數(shù)是4.6,
∴估計該校4000名學(xué)生參加這次植樹活動的總體平均數(shù)是4.6棵.
于是4.6×4000=18400(棵),
∴估計該校800名學(xué)生植樹約為18400棵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 閱讀并補充下面推理過程:(1)
如圖1,已知點A是BC外一點,連接AB,AC.
求∠BAC+∠B+∠C的度數(shù).
解:過點A作ED∥BC,所以∠B= ,∠C= .
又因為∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
方法運用:(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).
深化拓展:(3)已知AB∥CD,點C在點D的右側(cè),∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間.
.如圖3,點B在點A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為 °.
Ⅱ.如圖4,點B在點A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為 °.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的兩邊長分別為4cm和8cm,則它的周長為( )
A.16cm B.17cm C.20cm D.16cm或20cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,將點A(1,﹣2)向上平移3個單位長度,再向左平移2個單位長度,得到點A',則點A'的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,△ABC為任意三角形,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△DEC。
(1)試猜想AE與BD有何關(guān)系?說明理由;
(2)請給△ABC添加一個條件,使旋轉(zhuǎn)得到的四邊形ABDE為矩形,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某種電動汽車的性能,對這種電動汽車進行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個等級,其中相應(yīng)等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)問這次被抽檢的電動汽車共有幾輛?并補全條形統(tǒng)計圖;
(2)估計這種電動汽車一次充電后行駛的平均里程數(shù)為多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點P是等邊△ABC內(nèi)一點,PA=4,PB=3,PC=5.線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ.(1)求PQ的長。(2)求∠APB的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com