【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙OBC切于點D,與AC交于點E,連接AD

1)求證:AD平分∠BAC

2)若∠BAC60°,OA2,求陰影部分的面積(結(jié)果保留π).

【答案】1)證明見解析;(2

【解析】

1)由RtABC中,∠C=90°,⊙OBCD,易證得ACOD,繼而證得AD平分∠CAB
2)如圖,連接ED,根據(jù)(1)中ACOD和菱形的判定與性質(zhì)得到四邊形AEDO是菱形,則△AEM≌△DMO,則圖中陰影部分的面積=扇形EOD的面積.

1)證明:∵⊙OBCD,

ODBC

ACBC,

ACOD

∴∠CADADO,

OAOD

∴∠OADADO,

∴∠OADCAD

AD平分CAB;

2)設(shè)EOAD交于點M,連接ED

∵∠BAC60°,OAOE

∴△AEO是等邊三角形,

AEOA,AOE60°,

AEAOOD,

又由(1)知,ACODAEOD

四邊形AEDO是菱形,則AEM≌△DMO,EOD60°

SAEMSDMO,

S陰影S扇形EODπ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保局對某企業(yè)排污情況進(jìn)行檢測,結(jié)果顯示,所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的,環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo),整改過程中,所排污水中硫化物的濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度與時間成反比例關(guān)系

1)求整改過程中硫化物的濃度與時間的函數(shù)表達(dá)式(要求標(biāo)注自變量的取值范圍)

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)(含15天)排污達(dá)標(biāo)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)求該二次函數(shù)與x軸的交點坐標(biāo)和頂點;

2)在所給坐標(biāo)系中畫出該二次函數(shù)的大致圖象,并寫出當(dāng)y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當(dāng)天進(jìn)店購物的顧客,都能獲得一次抽獎的機(jī)會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標(biāo)有數(shù)字12、33個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機(jī)取出一個小球,記下小球上標(biāo)有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為6,則可獲得50元代金券一張;若所得的數(shù)字之和為5,則可獲得30元代金券一張;若所得的數(shù)字之和為4,則可獲得15元代金券一張;其它情況都不中獎.

1)請用列表或樹狀圖的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結(jié)果表示出來.

2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎活動,求能中獎的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,點COA的中點,CE⊥OA于點E,以點O為圓心,OC的長為半徑作OB于點D.若OA=4,則圖中陰影部分的面積為( 。

A. + B. +2 C. + D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點P,過點B的直線交OP的延長線于點C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a,0<a+b+c<2,0<b<1,當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是

A.5個 B.4個 C.3個 D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被譽(yù)為中原第一高樓的鄭州會展賓館(俗稱玉米樓”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點.學(xué)完了三角函數(shù)知識后,劉明和王華決定用自己學(xué)到的知識測量玉米樓的高度.如圖,劉明在點C處測得樓頂B的仰角為45°,王華在高臺上的D處測得樓頂?shù)难鼋菫?/span>40°.若高臺DE的高為5米,點D到點C的水平距離EC47.4米,AC,E三點共線,求玉米樓”AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案