【題目】如圖,已知AB∥CD,CD的右側(cè),BE平分∠ABCDE平分∠ADC,BEDE所在直線交于點(diǎn)E∠ADC =70°.

1)求∠EDC的度數(shù);

2)若∠ABC =n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);

3)將線段BC沿DC方向平移, 使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示),不改變,請(qǐng)說明理由.

【答案】1)、35°;(2)、(n+35)°;(3)、(215n)°.

【解析】試題分析:(1)、根據(jù)角平分線直接得出答案;(2)、過點(diǎn)EEF∥AB,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)求出角度;(3)、首先根據(jù)題意畫出圖形,然后過點(diǎn)EEF∥AB,按照第二小題同樣的方法進(jìn)行計(jì)算角度.

試題解析:(1)、∵DE平分∠ADC,∠ADC=70°,

∴∠EDC=∠ADC=×70°=35°;

2)、過點(diǎn)EEF∥AB,

∵AB∥CD,

∴AB∥CD∥EF,

∴∠ABE=∠BEF,∠CDE=∠DEF,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°∠ADC=70°,

∴∠ABE=∠ABC=∠CDE=∠ADC=35°,

∴∠BED=∠BEF+∠DEF=n°+35°;

3)、過點(diǎn)EEF∥AB

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABE=∠ABC=∠CDE=∠ADC=35°

∵AB∥CD,

∴AB∥CD∥EF,

∴∠BEF=180°-∠ABE=180°-,∠CDE=∠DEF=35°,

∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,適合用普查的是( )

A. 了解某市中學(xué)生的視力情況

B. 了解某市中學(xué)生課外閱讀的情況

C. 了解某市百歲以上老人的健康情況

D. 了解某市老年人參加晨練的情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:

①當(dāng)x>0時(shí),y1>y2; ②當(dāng)x<0時(shí),x值越大,M值越。

③使得M大于2的x值不存在; ④使得M=1的x值是

其中正確的是( )

A.①② B.①④ C.②③ D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)圖形經(jīng)過分割,能成為若干個(gè)與自身相似的圖形,我們稱它為“能相似分割的圖形”,如圖所示的等腰直角三角形和矩形就是能相似分割的圖形.

(1)你能否再各舉出一個(gè)“能相似分割”的三角形和四邊形;

(2)一般的三角形是否是“能相似分割的圖形”?如果是請(qǐng)給出一種分割方案并畫出圖形,否則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)三角形兩邊分別為2cm7cm,且第三邊為奇數(shù),則此三角形為( 。

A. 不等邊三角形 B. 等腰三角形 C. 等邊三角形 D. 直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ax2+bx+1與3x+1的積不含x3的項(xiàng),也不含x的項(xiàng),那么a=________,b=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿AFBCDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,

①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由下表估算一元二次方程x2+12x=15的一個(gè)根的范圍,其中正確的是( )

X

1.0

1.1

1.2

1.3

X2+12x

13

14.41

15.84

17.29


A.1.0<x<1.1
B.1.1<x<1.2
C.1.2<x<1.3
D.14.41<x<15.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB=10cm,BC=8cm,點(diǎn)E是CD的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿ABCE運(yùn)動(dòng),最終到達(dá)點(diǎn)E.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,那么當(dāng)x= 時(shí),APE的面積等于32.

查看答案和解析>>

同步練習(xí)冊(cè)答案