【題目】在△ABC 中,∠ABC=60°,BC=8,點 D 是 BC 邊的中點,點 E 是邊 AC上一點,過點 D 作 ED 的垂線交邊 AC 于點 F,若 AC=7CF,且 DE 恰好平分△ABC 的周長,則△ABC 的面積為______.
【答案】10
【解析】
取 AC 的中點 M,連接 DM,作 AH⊥BC 于 H.設 DM=a,AE=b.想辦法證明 DM=EM=FM=a.AE=CF=b,2a=5b,解直角三角形求出 BH,CH 用 b 表示,根據(jù)邊長的長構建方程求出 b 即可解決問題;
如圖,取AC的中點M,連接DM,作AH⊥BC于H.
設 DM=a,AE=b.
∵BD=DC,AM=MC,
∴AB=2DM=2a,
∵AB+AE+BD=EC+DC,
∴EC=2a+b,AC=2a+2b,
∴AM=MC=a+b,
∴EM=a,
∴EM=DM,
∴∠MED=∠MDE,
∵∠MED+∠MFD=90°,∠MDE+∠MDF=90°,
∴∠MFD=∠MDF,
∴MD=MF=a,
∴CF=AE=b,
∵AC=7CF,
∴2a+2b=7b,
∴2a=5b,
∵AB=5b,AC=7b,
在 Rt△ABH 中,∵∠B=60°,
∴BH= AB= b,AH= b,
在 Rt△ACH 中,CH==b,
∴BC=BH+HC=8b,
∴8b=8,
∴b=1,
∴S△ABC= ×8×=10,
故答案為: 10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC中,AB、BC邊上的垂直平分線相交于點P.若∠BAC=50°,則∠BPC的度數(shù)為( )
A.100°B.110°C.115°D.120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.
(1)點A的坐標為 點B的坐標為 ,點C的坐標為 ;
(2)設拋物線y=x2-2x-3的頂點坐標為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某中學數(shù)學活動小組為了調查居民的用水情況,從某社區(qū)的戶家庭中隨機抽取了戶家庭的月用水量,結果如下表所示:
月用水量(噸) | |||||||
戶數(shù) |
(1)求這戶家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)上述數(shù)據(jù),試估計該社區(qū)的月用水量;
(3)由于我國水資源缺乏,許多城市常利用分段計費的辦法引導人們節(jié)約用水,即規(guī)定每個家庭的月基本用水量為(噸),家庭月用水量不超過(噸)的部分按原價收費,超過(噸)的部分加倍收費.你認為上述問題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個量作為月基本用水量比較合理?簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關系,并測得相關數(shù)據(jù):
滑行時間t1/s | 0 | 1 | 2 | 3 | 4 |
滑行距離y1/s | 0 | 4.5 | 14 | 28.5 | 48 |
滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.
(1)求y1和t1滿足的二次函數(shù)解析式;
(2)求滑坡AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】再讀教材:
寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調,勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.
第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步,折出內側矩形的對角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點D折出 DE,使 DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號);
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
(4)結合圖④.請在矩形 BCDE中添加一條線段,設計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,老師出了這樣一道題:甲、乙兩地相距1400km,乘高鐵列車從甲地到乙地比乘特快列車少用9h,已知高鐵列車的平均行駛速度是特快列車的2.8倍.求高鐵列車從甲地到乙地的時間.
老師要求同學先用列表方式分析再解答.下面是兩個小組分析時所列的表格:
小組甲:設特快列車的平均速度為km/h.
時間/h | 平均速度/(km/h) | 路程/km | |
高鐵列車 | 1400 | ||
特快列車 | 1400 |
小組乙:高鐵列車從甲地到乙地的時間為h.
時間/h | 平均速度/(km/h) | 路程/km | |
高鐵列車 | 1400 | ||
特快列車 | 1400 |
(1)根據(jù)題意,填寫表格中空缺的量;
(2)結合表格,選擇一種方法進行解答.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com