【題目】已知一次函數(shù)的圖像與軸、軸分別交于點B、A.AB為邊在第一象限內(nèi)作等腰直角三角形ABC,且∠ABC=90°,BA=BC,作OB的垂直平分線l,交直線AB與點E,交x軸于點G.

1)求點的坐標;

2)在OB的垂直平分線l上有一點M,且點M與點C位于直線AB的同側,使得,求點M的坐標;

3)在(2)的條件下,聯(lián)結CECM,判斷CEM的形狀,并給予證明;

【答案】(1) C(6,2);(2) M(1,7);(3)見解析.

【解析】

1)過點Cx軸的垂線,交x軸于點H,通過“角邊角”易證,得到BH=AO=4,CH=OB=2,即可得到C點坐標;

2)根據(jù)題意可設點M1,a),根據(jù)可得關于m的方程,然后求解方程即可;

3)由(2)可得CE=5,EM=5,CM=,根據(jù)勾股定理的逆定理即可得到是等腰直角三角形.

解:(1)過點Cx軸的垂線,交x軸于點H

,

∴A0,4),B2,0),

∵BA=BC,

ASA),

∴BH=AO=4,CH=OB=2,

∴C6,2

2)如圖,由題意可知點G1,0),點E1,2),

AB=BC=2,

,

,

M1a,,

解的a=7,

M(1,7)

3)聯(lián)結CM,CE,

由于點E(1,2),C(6,2),M(1,7)

CE=5,EM=5,CM=,

可得:

CE=EM,

是等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+2=180°,∠B=3,∠BCD=80°,求∠ADC的度數(shù).

解:∵∠1+2=180°,(已知)

.(

∴∠B=DEC.(

∵∠B=3,(已知)

ADBC,(

(兩直線平行,同旁內(nèi)角互補)

∵∠BCD=80°,

∴∠ADC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子.

(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折合起來(如圖所示).設小正方形的邊長為xcm,當做成盒子的底面積為900cm2時,求該盒子的高;

(2)如果要做成一個有蓋的長方體盒子,其制作方案要求同時符合下列兩個條件:

①必須在薄鋼片四個角上各截去一個四邊形(其余部分不能裁截);

②折合后薄鋼片既無空隙又不重疊地圍成各盒面.

請你畫出符合上述制作方案的一種草圖,并求當?shù)酌娣e為800cm2時,該盒子的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】吸煙有害健康.你知道嗎,被動吸煙也大大危害著人類的健康.為此,聯(lián)合國規(guī)定每年的531日為世界無煙日.為配合今年的世界無煙日宣傳活動,小明和同學們在學校所在地區(qū)展開了以我支持的戒煙方式為主題的問卷調(diào)查活動,征求市民的意見,并將調(diào)查結果分析整理后,制成下列統(tǒng)計圖:

1)求小明和同學們一共隨機調(diào)查了多少人?

2)根據(jù)以上信息,請你把統(tǒng)計圖補充完整;

3)如果該地區(qū)有2萬人,那么請你根據(jù)以上調(diào)查結果,估計該地區(qū)大約有多少人支持強制戒煙這種戒煙方式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交軸,軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.

(1)直接寫出點A,B的坐標,并求直線AB與CD交點E的坐標;

(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作,垂足為H,連接NP.設點P的運動時間為秒.

NPH的面積為1,求的值;

點Q是點B關于點A的對稱點,問是否有最小值,如果有,求出相應的點P的坐標;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(足夠長),已知計劃中的建筑材料可建圍墻的總長度為50m 設飼養(yǎng)室為長為x(m),占地面積為

(1)如圖 ,問飼養(yǎng)室為長x為多少時,占地面積y 最大?

(2)如圖現(xiàn)要求在圖中所示位置留2m的門,且仍使飼養(yǎng)室占地面積最大.小敏說:只要飼養(yǎng)室長比(1)的長多2m就行了.請你通過計算,判斷小敏的說法是否正確.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線ABy=-2x+8y軸于點A,交x軸于點B,以AB為底作等腰三角形ABC的頂點C恰好落在y軸上,連接BC,直線x=2AB于點D,交BC于點E,交x軸于點G,連接CD

1)求證:∠OCB=2CBA;

2)求點C的坐標和直線BC的解析式;

3)求DEB的面積;

4)在x軸上存在一點P使PD-PC最長,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)請將條形統(tǒng)計圖補充完整;

(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?

查看答案和解析>>

同步練習冊答案