【題目】如圖,平行四邊形ABCD的面積為32,對角線BD繞著它的中點O按順時針方向旋轉一定角度后,其所在直線分別交BCAD于點E、F,若AF3DF,則圖中陰影部分的面積等于_____

【答案】4

【解析】

DF=a,則AF=3aAD=4a,設BCAD之間的距離為h,求出BE=DF=a,根據平行四邊形的面積求出ah=8,求出陰影部分的面積= ah,即可得出答案.

DF=a,則AF=3aAD=4a,

BCAD之間的距離為h

∵四邊形BACD是平行四邊形,

ADBE,AD=BC=4a,

BO=OD,

BEAD,

∴△BEO≌△DFO,

BE=DF=a

∵平行四邊形ABCD的面積為32

4a×h=32

ah=8,

∴陰影部分的面積S=SBEO+SDFO=×BE+DF×h=×(a+a)×h=ah=4

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是藥品研究所測得的某種新藥在成人用藥后,血液中的藥物濃度y(微克/毫升)隨用藥后的時間x(小時)變化的圖象(圖象由線段OA與部分雙曲線AB組成).并測得當ya時,該藥物才具有療效.若成人用藥4小時,藥物開始產生療效,且用藥后9小時,藥物仍具有療效,則成人用藥后,血液中藥物濃度至少需要多長時間達到最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆漢字聽寫大賽,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)?/span>(分),且,將其按分數(shù)段分為五組,繪制出以下不完整表格:

組別

成績(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據表格提供的信息,解答以下問題:

(1)本次決賽共有 名學生參加;

(2)直接寫出表中a= ,b= ;

(3)請補全下面相應的頻數(shù)分布直方圖;

(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)計算 ;

2)計算

3)計算 ;

4 解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玉米種子的價格為a/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折.下表是購買量x(千克)、付款金額y(元)部分對應的值,請你結合表格:

購買量x(千克)

1.5

2

2.5

3

付款金額y(元)

7.5

10

12

b

(1)寫出a、b的值,a=    b=   ;

(2)求出當x2時,y關于x的函數(shù)關系式;

(3)甲農戶將18.8元錢全部用于購買該玉米種子,計算他的購買量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.

(1)求拋物線的解析式;

(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點Py軸的平行線交直線EO于點G,作PHEO,垂足為H.設PH的長為l,點P的橫坐標為m,求lm的函數(shù)關系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )

A. 賽跑中,兔子共休息了50分鐘

B. 烏龜在這次比賽中的平均速度是0.1米/分鐘

C. 兔子比烏龜早到達終點10分鐘

D. 烏龜追上兔子用了20分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于C點,且經過點(2,﹣3a),對稱軸是直線x=1,頂點是M.

(1)求拋物線對應的函數(shù)表達式;

(2)經過C,M兩點作直線與x軸交于點N,在拋物線上是否存在這樣的點P,使以點P,A,C,N為頂點的四邊形為平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)設直線y=﹣x+3與y軸的交點是D,在線段BD上任取一點E(不與B,D重合),經過A,B,E三點的圓交直線BC于點F,試判斷AEF的形狀,并說明理由;

(4)當E是直線y=﹣x+3上任意一點時,(3)中的結論是否成立(請直接寫出結論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在實施城鄉(xiāng)清潔工作過程中,某校對各個班級教室衛(wèi)生情況的考評包括以下幾項:黑板、門窗、桌椅、地面.一天,兩個班級的各項衛(wèi)生成績分別如下表:(單位:分)

黑板

門窗

桌椅

地面

一班

95

85

89

91

二班

90

95

85

90

(1)兩個班的平均得分分別是多少?

(2)按學校的考評要求,將黑板、門窗、桌椅、地面這四項得分依次按15%、10%、35%、40%的權重計算各班的衛(wèi)生成績,那么哪個班的衛(wèi)生成績較高?請說明理由.

查看答案和解析>>

同步練習冊答案