【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)M是AB邊的中點(diǎn).

(1)如圖1,若CM=,求△ACB的周長(zhǎng);

(2)如圖2,若N為AC的中點(diǎn),將線段CN以C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°,使點(diǎn)N至點(diǎn)D處,連接BD交CM于點(diǎn)F,連接MD,取MD的中點(diǎn)E,連接EF.求證:3EF=2MF.

【答案】(1)(2)證明見(jiàn)解析.

【解析】

1)根據(jù)直角三角形中,斜邊上的中線等于斜邊的一半可得AB的長(zhǎng)度,根據(jù)30°所對(duì)的直角邊等于斜邊的一半可得BC的長(zhǎng)度,最后根據(jù)勾股定理可得AC的長(zhǎng)度,計(jì)算出周長(zhǎng)即可;

2)如圖所示添加輔助線,由(1)可得ΔBCM是等邊三角形,可證ΔBCPΔCMN,進(jìn)而證明ΔBPFΔDCF,根據(jù)EMD中點(diǎn),得出,根據(jù)BPMC,得出,進(jìn)而得出3EF=2MF即可.

解:(1) 在Rt△ABC中,∠ACB=90°,點(diǎn)M是AB邊的中點(diǎn),

AB=2MC=,

又∵∠A=30°,

由勾股定理可得,

∴△ABC的周長(zhǎng)為++6=

(2)過(guò)點(diǎn)BBPMCP

∵∠ACB=90°,∠A=30° ,

MAB的中點(diǎn)

∵∠ABC=60°

ΔBCM是等邊三角形

∴∠CBP=∠MCN=30°,BC=CM

∴在ΔBCPΔCMN

ΔBCPΔCMN(AAS)

BP=CN CN=CD BP=CD

∵∠BPF=DCF=90°

BFP=DFC

ΔBPFΔDCF

PF=FC BF=DF

EMD中點(diǎn),

BPMC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文具店有三種品牌的6個(gè)筆記本,價(jià)格是4,5,7(單位:元)三種,從中隨機(jī)拿出一個(gè)本,已知(一次拿到7元本)

1)求這6個(gè)本價(jià)格的眾數(shù).

2)若琪琪已拿走一個(gè)7元本,嘉嘉準(zhǔn)備從剩余5個(gè)本中隨機(jī)拿一個(gè)本.

①所剩的5個(gè)本價(jià)格的中位數(shù)與原來(lái)6個(gè)本價(jià)格的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;

②嘉嘉先隨機(jī)拿出一個(gè)本后不放回,之后又隨機(jī)從剩余的本中拿一個(gè)本,用列表法求嘉嘉兩次都拿到7元本的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以OA為邊在第一象限內(nèi)作正方形OABC,點(diǎn)Dx軸正半軸上一動(dòng)點(diǎn)(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MAy軸于點(diǎn)N.如果定義:只有一組對(duì)角是直角的四邊形叫做損矩形.

(1)試找出圖1中的一個(gè)損矩形;

(2)試說(shuō)明(1)中找出的損矩形的四個(gè)頂點(diǎn)一定在同一個(gè)圓上;

(3)隨著點(diǎn)D位置的變化,點(diǎn)N的位置是否會(huì)發(fā)生變化?若沒(méi)有發(fā)生變化,求出點(diǎn)N的坐標(biāo);若發(fā)生變化,請(qǐng)說(shuō)明理由;

(4)在圖中,過(guò)點(diǎn)MMG⊥y軸于點(diǎn)G,連接DN,若四邊形DMGN為損矩形,求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中2條直線,分別為,,直線軸于點(diǎn),交軸于點(diǎn),直線軸于點(diǎn),過(guò)點(diǎn)軸的平行線交于點(diǎn),拋物線過(guò)、、三點(diǎn).

下列判斷中:

拋物線關(guān)于直線軸對(duì)稱 ;

點(diǎn)在拋物線上方;

;

.其中正確的個(gè)數(shù)有( )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,、的直徑,過(guò)點(diǎn)的切線與的延長(zhǎng)線交于點(diǎn),,連接、.

1)求證:AC的角平分線;

2)求證:;

3)若,⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)(即這些小正方形的頂點(diǎn))上,且它們的坐標(biāo)分別是A2,﹣3),B5,﹣1),C1,3),結(jié)合所給的平面直角坐標(biāo)系,解答下列問(wèn)題:

1)請(qǐng)?jiān)谌鐖D坐標(biāo)系中畫(huà)出ABC

2)畫(huà)出ABC關(guān)于y軸對(duì)稱的A'B'C',并寫(xiě)出A'B'C'各頂點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘船由A港沿北偏東65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.

求:(1)∠C的度數(shù);

2AC兩港之間的距離為多少km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)C1yax22ax3aa≠0)的圖象繞點(diǎn)Pm,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱C2C1關(guān)于點(diǎn)P的相關(guān)函數(shù).C2的圖象的對(duì)稱軸與x軸交點(diǎn)坐標(biāo)為(t,0).

1)填空:t的值為   (用含m的代數(shù)式表示)

2)若a=﹣1,當(dāng)xt時(shí),函數(shù)C1的最大值為y1,最小值為y2,且y1y21,求C2的解析式;

3)當(dāng)m0時(shí),C2的圖象與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).與y軸相交于點(diǎn)D.把線段AD原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到它的對(duì)應(yīng)線段AD,若線ADC2的圖象有公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案