在一個3m×4m的長方形地塊上,欲開出一部分作花壇,其圖案要為中心對稱圖形且花壇的面積為長方形面積的一半,圖示是兩種設計方案,你還能提供兩種不同的設計方案嗎?(要有適當?shù)挠嬎悴襟E)

解:涉及方案如圖所示:

第一種情況:陰影部分的面積=4××1.5×2=6m2;
第二種情況:陰影部分的面積=4×1.5×1=6m2;
分析:①可在四個角分別添加一個面積為1.5m2的直角三角形;②可在四個角分別添加面積為1.5m2的矩形;分別畫出圖形即可.
點評:此題考查的知識點是利用旋轉(zhuǎn)設計圖案,屬于開放性題目,關(guān)鍵是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合,難度一般.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,一個高4m、寬3m的大門,需要在對角線的頂點間加固一個木條,求木條的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀理解
九年級一班數(shù)學學習興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數(shù)”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數(shù)的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網(wǎng)
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀理解
九年級一班數(shù)學學習興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數(shù)”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數(shù)的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得數(shù)學公式解得數(shù)學公式
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省南京市溧水縣中考數(shù)學二模試卷(解析版) 題型:解答題

閱讀理解
九年級一班數(shù)學學習興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數(shù)”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數(shù)的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一個高4m、寬3m的大門,需要在對角線的頂點間加固一個木條,求木條的長.

查看答案和解析>>

同步練習冊答案