【題目】平面直角坐標(biāo)中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數(shù)y=-
圖象上的一個動點,過點PPQx軸,垂足為Q . 若以點O、P、Q為頂點的三角形與OAB相似,則相應(yīng)的點P共有( 。.
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】∵點P是反比例函數(shù)y=- 圖象上,

∴設(shè)點Px , y),
當(dāng)△PQO∽△AOB時,則 ,
PQ=yOQ=-x , OA=2,OB=1,
,即y=-2x ,
xy=-1,即-2x2=-1,
x
∴點P為( ,- )或(- );
同理,當(dāng)△PQO∽△BOA時,
求得P(- , )或( ,- );
故相應(yīng)的點P共有4個.
故選:D
可以分別從△PQO∽△AOB與△PQO∽△BOA去分析,首先設(shè)點Px , y),根據(jù)相似三角形的對應(yīng)邊成比例與反比例函數(shù)的解析式,聯(lián)立可得方程組,解方程組即可求得點P的坐標(biāo),即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CDAB , 垂足為D , AB=c , ∠a=α , 則CD長為( 。
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上:   

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別a、a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC , E、F分別是AB、CD的中點,則下列結(jié)論:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF .
其中正確的個數(shù)是( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB=90,DBC延長線上一點,EBD的垂直平分線與AB的交點,DEAC于點F,求證:EA=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm , AC=12cm , 動點M從點A出發(fā),以1cm∕秒的速度向點B運(yùn)動,動點N從點C出發(fā),以2cm∕秒的速度向點A運(yùn)動,若兩點同時運(yùn)動,是否存在某一時刻t , 使得以點A、MN為頂點的三角形與△ABC相似,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD△ABC的角平分線,請按如下要求操作解答:

(1)過點DDE∥BCABE,若∠A=68°,∠AED=42°,求∠BDC的度數(shù).

(2)△ABC的角平分線CFBD于點M,∠A=60°,求∠CMD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形EFGH是由矩形ABCD的外角平分線圍成的. 求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2),B﹣3﹣2

1)若點C與點A關(guān)于原點O對稱,則點C的坐標(biāo)為   ;

2)將點A向右平移5個單位得到點D,則點D的坐標(biāo)為   ;

3)由點A,B,CD組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標(biāo)均為整數(shù)的點,求所取的點橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

同步練習(xí)冊答案