【題目】如圖一次函數(shù)的圖像交軸于點,軸于點.以為圓心的軸相切,若點以每秒個單位的速度沿軸向右平移,同時的半徑以每秒增加個單位的速度不斷變大,設(shè)運動時間為

的坐標(biāo)為__________,的坐標(biāo)為__________,__________

在運動過程中,的坐標(biāo)為__________,⊙的半徑為__________(用含的代數(shù)式表示).

當(dāng)與直線相交于點、

如圖,時弦的長

在運動過程中是否存在以為直角頂點,若存在,請求出的值;若不存在,請說明理由利用圖解題).

【答案】1)(10,0),(010),45;(2)(1+2t0),1+t;(3)①;②t=10

【解析】試題分析:(1)利用待定系數(shù)法求出點A、B的坐標(biāo),即可解決問題.

(2)根據(jù)題意可得P(1+2t,0),⊙O半徑為1+t

(3)①如圖1,PKABK,連接PE.在Rt△APK,PKA=90°,∠PAK=45°,PA=4,推出PK的值,Rt△PEK根據(jù)勾股定理計算即可.

分兩種情形a、如圖2,當(dāng)點P在點A左側(cè)時F與點A重合時,∠EPF=90°;b、如圖3當(dāng)點P在點A右側(cè)時,F與點A重合時,∠EPF=90°.分別列出方程求解即可

試題解析:(1)∵y=﹣x+10的圖象交x軸于點A,y軸于點B,∴A(10,0),B(0,10),∴OA=OB=10.∵∠AOB=90°,∴∠OAB=∠OBA=45°.故答案分別為(10,0),(0,10),45°.

(2)由題意得:P(1+2t,0),⊙O半徑為1+t.故答案為:(1+2t,0),1+t

(3)①如圖1,PKABK,連接PE

當(dāng)t=,P(6,0),半徑為3.5,Rt△APK中,∵PKA=90°,∠PAK=45°,PA=4,∴PK=PA=,Rt△PEK,EK==,∴EF=2EK=

存在.

a、如圖2當(dāng)點P在點A左側(cè)時,F與點A重合時,∠EPF=90°.

OP+PA=OA,∴1+2t+1+t=10,∴t=

b、如圖3,當(dāng)點P在點A右側(cè)時,F與點A重合時,∠EPF=90°.

OPPF=OA,∴1+2t﹣(1+t)=10,∴t=10.

綜上所述t=s10s,存在以點P為直角頂點的Rt△PEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進行調(diào)查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題:

(1)該調(diào)查的樣本容量為________, =________%, =________%,“常常”對應(yīng)扇形的圓心角的度數(shù)為__________;

(2)請你補全條形統(tǒng)計圖;

(3)若該校有3200名學(xué)生,請你估計其中“總是”對錯題進行整理、分析、改正的

學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點.其中滿足.

(1)的值;

(2)如果在第二象限內(nèi)有一點 ,請用含的式子表示四邊形的面積;

(3)在(2)的條件下,是否存在點,使四邊形的面積為△的面積的兩倍?若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BAD+ADC=180°,AE平分∠BAD,CDAE相交于F,∠CFE=AEB.

(1)若∠B=86°,求∠DCG的度數(shù);

(2)ADBC是什么位置關(guān)系?并說明理由;

(3)若∠DAB=DGC=直接寫出當(dāng)滿足什么數(shù)量關(guān)系時,AEDG?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中有對角線ACBD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:

(1)AC=__________.

(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點B在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)日一周天氣預(yù)報如圖,小麗打算選擇這期間的一天或兩天去該景區(qū)旅游.

)隨機選擇一天,恰好天氣預(yù)報是晴的概率是___________.

)求隨機選擇連續(xù)的兩天,恰好天氣預(yù)報都是晴的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知OBOX,OAOC,COX=40°,若射線OAO點以每秒30°的速度順時針旋轉(zhuǎn),射線OCO點每秒10°的速度逆時針旋轉(zhuǎn), 兩條射線同時旋轉(zhuǎn),當(dāng)一條射線與射線OX重合時,停止運動.

1)開始旋轉(zhuǎn)前,∠AOB______________

2)當(dāng)OAOC的夾角是10°時,求旋轉(zhuǎn)的時間.

3)若射線OB也繞O點以每秒20°的速度順時針旋轉(zhuǎn),三條射線同時旋轉(zhuǎn),當(dāng)一條射線與射線OX重合時,停止運動.當(dāng)三條射線中其中一條射線是另外兩條射線夾角的角平分線時,求旋轉(zhuǎn)的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“保護好環(huán)境,拒絕冒黑煙”荊州市公交公司將淘汰一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買型和型兩種環(huán)保節(jié)能公交車輛,若購買型公交車輛,型公交車輛,共需萬元,若購買型公交車輛,型公交車輛,共需萬元.

1)求購買購買型和型公交車每輛多少錢?

2)預(yù)計在該線路上型和型公交車每輛年均載客量分別為萬人次和萬人次,若該公司購買型和型公交車的總費用不超過萬元,且確保這輛公交車在該線路上的年平均載客總和不少于萬人次,則該公司有哪幾種購車方案?

3)在(2)的條件下,哪種購車方案總費用最少?最少費用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,AD=6,BC=16,EBC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒2個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.當(dāng)運動時間________秒時,以點P,Q,ED為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案