如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A→B→A方向運動,設(shè)運動時間為t(s)(0≤t<3),連接EF,當△BEF是直角三角形時,t(s)的值為( )

A.
B.1
C.或1
D.或1或
【答案】分析:若△BEF是直角三角形,則有兩種情況:①∠BFE=90°,②∠BEF=90°;在上述兩種情況所得到的直角三角形中,已知了BC邊和∠B的度數(shù),即可求得BE的長;AB的長易求得,由AE=AB-BE即可求出AE的長,也就能得出E點運動的距離,根據(jù)時間=路程÷速度即可求得t的值.
解答:解:∵AB是⊙O的直徑,
∴∠ACB=90°;
Rt△ABC中,BC=2,∠ABC=60°;
∴AB=2BC=4cm;
①當∠BFE=90°時;
Rt△BEF中,∠ABC=60°,則BE=2BF=2cm;
故此時AE=AB-BE=2cm;
∴E點運動的距離為:2cm,故t=1s;
所以當∠BFE=90°時,t=1s;
②當∠BEF=90°時;
同①可求得BE=0.5cm,此時AE=AB-BE=3.5cm;
∴E點運動的距離為:3.5cm,故t=1.75s;
③當E從B回到O的過程中,在運動的距離是:2(4-3.5)=1cm,則時間是:1.75+=s.
綜上所述,當t的值為1s或1.75s和s時,△BEF是直角三角形.
故選D.
點評:此題主要考查了圓周角定理以及直角三角形的判定和性質(zhì),同時還考查了分類討論的數(shù)學思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案