【題目】如圖,已知在菱形中,, 則菱形的邊長等于____________
【答案】
【解析】
作BG⊥EF,連接BD,與EF相交于點H,由三角函數(shù)求出BG和GF的長度,然后得到EG的長度,由DE∥BF,則△DEH∽△BFH,則,設(shè)GH=x,則EH=2+x,FH=3-x,代入求出GH,再由勾股定理求出BH,得到BD的長度,即可得到菱形的邊長.
解:作BG⊥EF,連接BD,與EF相交于點H,如圖:
∵DE∥BF,
∴∠F=∠E,
∴sin∠F=sin∠E=,
∵BG⊥EF,
∴,
∵BF=EF=5,
∴BG=4,
∴FG=,
∴EG=5;
∵DE∥BF,
∴△DEH∽△BFH,
∴,
設(shè)GH=x,則EH=2+x,FH=3-x,
∴,
解得:,
∴;
在Rt△BGH中,由勾股定理,得
,
∴;
∵∠A=60°,AB=AD,
∴△ABD是等邊三角形,
∴;
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=4,b=5,則該矩形的面積為( 。
A.50B.40C.30D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AG⊥BC,垂足為點G,點E為邊AC上一點,BE=CE,點D為邊BC上一點,GD=GB,連接AD交BE于點F.
(1)求證:∠ABE=∠EAF;
(2)求證:AE2=EFEC;
(3)若CG=2AG,AD=2AF,BC=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點E、F分別是AB、AC的中點.
(1)求證:四邊形AEDF是菱形;
(2)如果四邊形AEDF的周長為12,兩條對角線的和等于7,求四邊形AEDF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化小區(qū),物業(yè)公司計劃對面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊的倍,如果要獨立完成面積為區(qū)域的綠化,甲隊比乙隊少用天.
求甲、乙兩工程隊每天能完成綠化的面積分別是多少?
若物業(yè)公司每天需付給甲隊的綠化費用為萬元,需付給乙隊的費用為萬元,要使這次的綠化總費用不超過萬元,至少應(yīng)安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答
(1)解不等式①,得___________;
(2)解不等式②,得___________;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,
(1) 將向右平移6個單位長度至, 再將繞點逆時針旋轉(zhuǎn)至,請按要求畫出圖形;
(2)在的變換過程中,直接寫出點的運動路徑長
(3)可看成繞某點旋轉(zhuǎn)得到的, 則點的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市特產(chǎn)大閘蟹,2016年的銷售額是億元,因生態(tài)優(yōu)質(zhì)美譽度高,銷售額逐年增加2018年的銷售額達(dá)億元,若2017、2018年每年銷售額增加的百分率都相同.
(1)求平均每年銷售額增加的百分率;
(2)該市這年大閘蟹的總銷售額是多少億元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com