【題目】如圖1,拋物線y=ax2+bx+4的圖象過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,作直線BC,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒 個(gè)單位長(zhǎng)度的速度沿CB向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).

(1)求拋物線的表達(dá)式;
(2)如圖2,當(dāng)t=1時(shí),求SACP的面積;
(3)如圖3,過(guò)點(diǎn)P向x軸作垂線分別交x軸,拋物線于E、F兩點(diǎn).
①求PF的長(zhǎng)度關(guān)于t的函數(shù)表達(dá)式,并求出PF的長(zhǎng)度的最大值;
②連接CF,將△PCF沿CF折疊得到△P′CF,當(dāng)t為何值時(shí),四邊形PFP′C是菱形?

【答案】
(1)

解:∵拋物線y=ax2+bx+4的圖象過(guò)A(﹣1,0),B(4,0)兩點(diǎn),

,解得:

∴拋物線的表達(dá)式為y=﹣x2+3x+4.


(2)

解:令x=0,則y=4,

即點(diǎn)C的坐標(biāo)為(0,4),

∴BC= =4

設(shè)直線BC的解析式為y=kx+4,

∵點(diǎn)B的坐標(biāo)為(4,0),

∴0=4k+4,解得k=﹣1,

∴直線BC的解析式為y=﹣x+4.

當(dāng)t=1時(shí),CP= ,

點(diǎn)A(﹣1,0)到直線BC的距離h= = = ,

SACP= CPh= × × =


(3)

解:①∵直線BC的解析式為y=﹣x+4,

∴CP= t,OE=t,設(shè)P(t,﹣t+4),F(xiàn)(t,﹣t2+3t+4),(0≤t≤4)

PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).

當(dāng)t=﹣ =2時(shí),PF取最大值,最大值為4.

②∵△PCF沿CF折疊得到△P′CF,

∴PC=P′C,PF=P′F,

當(dāng)四邊形PFP′C是菱形時(shí),只需PC=PF.

t=﹣t2+4t,

解得:t1=0(舍去),t2=4﹣

故當(dāng)t=4﹣ 時(shí),四邊形PFP′C是菱形.


【解析】(1)將A、B點(diǎn)的坐標(biāo)代入函數(shù)解析式中,即可得到關(guān)于a、b的二元一次方程,解方程即可得出結(jié)論;(2)令x=0可得出C點(diǎn)的坐標(biāo),設(shè)出直線BC解析式y(tǒng)=kx+4,代入B點(diǎn)坐標(biāo)可求出k值,利用面積法求出點(diǎn)A到直線BC的距離結(jié)合三角形的面積,即可得出結(jié)論;(3)①由直線BC的解析式為y=﹣x+4可得知OE= CP,設(shè)出P、F點(diǎn)的坐標(biāo),由F點(diǎn)的縱坐標(biāo)﹣P點(diǎn)的縱坐標(biāo)即可得出PF的長(zhǎng)度關(guān)于t的函數(shù)表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可求出最值問(wèn)題;②由翻轉(zhuǎn)特性可知PC=P′C,PF=P′F,若四邊形PFP′C是菱形,則有PC=PF,由此得出關(guān)于t的二元一次方程,解方程即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+c與y軸交于點(diǎn)A(0,6),與x軸交于點(diǎn)B(6,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求這條拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)到拋物線的什么位置時(shí),使得∠PAB=75°,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P從A點(diǎn)出發(fā)沿線段AB上方的拋物線向終點(diǎn)B移動(dòng),在移動(dòng)中,點(diǎn)P的橫坐標(biāo)以每秒1個(gè)單位長(zhǎng)度的速度變動(dòng),與此同時(shí)點(diǎn)M以每秒1個(gè)單位長(zhǎng)度的速度沿AO向終點(diǎn)O移動(dòng),點(diǎn)P,M移動(dòng)到各自終點(diǎn)時(shí)停止,當(dāng)兩個(gè)移點(diǎn)移動(dòng)t秒時(shí),求四邊形PAMB的面積S關(guān)于t的函數(shù)表達(dá)式,并求t為何值時(shí),S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2+bx的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是(
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2 ),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn),過(guò)點(diǎn)E的直線l與x軸交于點(diǎn)F,與射線DC交于點(diǎn)G.

(1)求∠DCB的度數(shù);
(2)當(dāng)點(diǎn)F的坐標(biāo)為(﹣4,0)時(shí),求點(diǎn)G的坐標(biāo);
(3)連接OE,以O(shè)E所在直線為對(duì)稱軸,△OEF經(jīng)軸對(duì)稱變換后得到△OEF',記直線EF'與射線DC的交點(diǎn)為H.
如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求證:△DEG∽△DHE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求進(jìn)行計(jì)算:
(1)計(jì)算:|﹣ |﹣ +2sin60°+( 1+(2﹣ 0
(2)先化簡(jiǎn),再求值: ÷(1﹣ ),其中a= ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過(guò)點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)大學(xué)生創(chuàng)業(yè),政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運(yùn)而生.某市統(tǒng)計(jì)了該市2015年1﹣5月新注冊(cè)小型企業(yè)的數(shù)量,并將結(jié)果繪制成如圖兩種不完整的統(tǒng)計(jì)圖:
(1)某市2015年1﹣5月份新注冊(cè)小型企業(yè)一共家,請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)該市2015年3月新注冊(cè)小型企業(yè)中,只有2家是養(yǎng)殖企業(yè),現(xiàn)從3月新注冊(cè)的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營(yíng)情況.請(qǐng)以列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是養(yǎng)殖企業(yè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】云南魯?shù)榘l(fā)生地震后,某社區(qū)開展獻(xiàn)愛(ài)心活動(dòng),社區(qū)黨員積極向?yàn)?zāi)區(qū)捐款,如圖是該社區(qū)部分黨員捐款情況的條形統(tǒng)計(jì)圖,那么本次捐款錢數(shù)的眾數(shù)和中位數(shù)分別是( 。

A.100元,100元
B.100元,200元
C.200元,100元
D.200元,200元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長(zhǎng)為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過(guò)點(diǎn)C,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案