如圖,n+1個(gè)上底、兩腰長皆為1,下底長為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,……,四邊形PnMnNnNn+1的面積記為Sn,則Sn=              
-?
先求出一個(gè)小梯形的高和面積,再根據(jù)相似三角形對應(yīng)高的比等于對應(yīng)邊的比求出四邊形PnMnNnNn+1上方的小三角形的高,然后用小梯形的面積減上方的小三角形的面積即可.
解答:解:如圖,根據(jù)題意,小梯形中,
過D作DE∥BC交AB于E,
∵上底、兩腰長皆為1,下底長為2,
∴AE=2-1=1,
∴△AED是等邊三角形,
∴高h(yuǎn)=1×sin60°=,
S梯形=×(1+2)×=,
設(shè)四邊形PnMnNnNn+1的上方的小三角形的高為x,
根據(jù)小三角形與△AMnNn相似,ANn=2n,
由相似三角形對應(yīng)邊上高的比等于相似比,可知,
解得x==,
∴Sn=S梯形-×1×,
=-?
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,下列說法正確的是(   )
 
A.若AB∥CD,則∠1=∠2B.若AD∥BC,則∠3=∠4
C.若∠1=∠2,則AD∥BCD.若∠1=∠2,則AB∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD中,對角線AC=10,M是AB上任意一點(diǎn),由M點(diǎn)作ME⊥OA,MF⊥OB,垂足分別為E、F點(diǎn),則ME+MF的值為
A.20B.10
C.15D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,四邊形為矩形紙片.把紙片折疊,使點(diǎn)恰好落在邊的中點(diǎn)處,折痕為.若,則
于(  。
A.B.C.D.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,順次連結(jié)四邊形ABCD各中點(diǎn)得四邊形EFGH,要使四邊形EFGH為矩形,應(yīng)添加的條件是(   )
A.ABDCB.ABDCC.ACBDD.ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形的邊長為1,;作于點(diǎn),以為一邊,做第二個(gè)菱形,使;作于點(diǎn),以為一邊做第三個(gè)菱形,使依此類推,這樣做的第個(gè)菱形的邊的長是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為3,E在BC上,且BE=2,P在BD上,則PE+PC的
最小值是                                                         (    )
A.B.C.5D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,F(xiàn)為正方形ABCD的對角線AC上一點(diǎn),F(xiàn)E⊥AD于點(diǎn)E,M為CF的中點(diǎn).

小題1:(1)求證:MB=MD;
小題2:(2)求證:ME=MB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中是真命題的有(    )個(gè)
(1)有人預(yù)測2011年杭州的房價(jià)會跌,這是一個(gè)必然事件                    
(2)過一點(diǎn)只能作一條直線與已知直線垂直
(3)三角形的兩邊長分別是3cm和4cm,一個(gè)內(nèi)角為40°,那么滿足條件且彼此不全等的三角形有4個(gè)                     
(4) 若一組數(shù)據(jù)1、2、3、x的極差為5,則x的值為6
(5)在下列圖形中,①正方形 ②平行四邊形 ③圓 ④等腰梯形 ⑤等邊三角形 ⑥線段 ⑦角 ⑧長方形 ⑨菱形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°能與自身重合的有6個(gè)
(6)圓心到直線上一點(diǎn)的距離恰好等于圓的半徑,則該直線是圓的切線;
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案