為了對一棵傾斜的古杉樹AB進行保護,需測量其長度.如圖,在地面上選取一點C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,求這棵古杉樹AB的長度.(結(jié)果取整數(shù))
參考數(shù)據(jù):≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.
這棵古杉樹AB的長度大約為18m.

試題分析:過B點作BD⊥AC于D.在Rt△ADB和Rt△CDB中,用BD表示出AD和CD,由AC=AD+CD=24m,列出方程求解即可
試題解析:過B點作BD⊥AC于D.

∵∠ACB=45°,∠BAC=66.5°,
∴在Rt△ADB中,AD=,
在Rt△CDB中,CD=BD,
∵AC=AD+CD=24m,
+BD=24,
解得BD≈17m.
AB=≈18m.
故這棵古杉樹AB的長度大約為18m.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

為踐行黨的群眾路線,六盤水市教育局開展了大量的教育教學實踐活動,如圖是其中一次“測量旗桿高度”的活動場景抽象出的平面幾何圖形.
活動中測得的數(shù)據(jù)如下:
①小明的身高DC=1.5m
②小明的影長CE=1.7cm
③小明的腳到旗桿底部的距離BC=9cm
④旗桿的影長BF=7.6m
⑤從D點看A點的仰角為30°
請選擇你需要的數(shù)據(jù),求出旗桿的高度.(計算結(jié)果保留到0.1,參考數(shù)據(jù)≈1.414.≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90º,∠ABC=30º,BC=,以AC為邊在△ABC的外部作等邊△ACD,連接BD.
(1)求四邊形ABCD的面積;
(2)求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

中國派遣三艘海監(jiān)船在南海保護中國漁民不受菲律賓的侵犯.在雷達顯示圖上,標明了三艘海監(jiān)船的坐標為O(0,0)、B(80,0)、C(80,60),(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達,雷達的有效探測范圍是半徑為r的圓形區(qū)域(只考慮在海平面上的探測).
(1)若在三艘海監(jiān)船組成的△OBC區(qū)域內(nèi)沒有探測盲點,則雷達的有效探測半徑r至少為_______海里;
(2)某時刻海面上出現(xiàn)一艘菲律賓海警船A,在海監(jiān)船C測得點A位于南偏東60°方向上,同時在海監(jiān)船B測得A位于北偏東45°方向上,海警船A正以每小時20海里的速度向正西方向移動,我海監(jiān)船B立刻向北偏東15°方向運動進行攔截,問我海監(jiān)船B至少以多少速度才能在此方向上攔截到菲律賓海警船A?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知梯形ABCD中,ADBC,∠B=30°,∠C=60°,AD=4,AB=3
3
,則下底BC的長是( 。
A.8B.(4+3
3
C.10D.6
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,AE⊥BC于E,D為AB邊上一點,如果BD=2AD,CD=8,sin∠BCD=
3
4
,那么AE的值為( 。
A.3B.6C.7.2D.9

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)(  )
A.10.8米 B.8.9米 C.8.0米 D.5.8米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當傘收緊時,結(jié)點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm
傘架
DE
DF
AE
AF
AB
AC
長度
36
36
36
36
86
86

(1)求AM的長。
(2)當∠BAC=104°時,求AD的長(精確到1cm),備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799。

查看答案和解析>>

同步練習冊答案