【題目】如圖,正方形ABCD中,內(nèi)部有6個全等的正方形,小正方形的頂點E、F、G、H分
別在邊AD、AB、BC、CD上,則tan∠DEH=( )
A.
B.
C.
D.
【答案】A
【解析】∵正方形ABCD的邊長為10a,
∴∠A=∠B=90° ,AB=10a,
過點G作GP⊥ AD,垂足為P,則∠DPG=∠APG.
∴四邊形APGB是矩形,
∴∠PGF+∠BGF=90°,PG=AB=10a,
∵六個大小完全一樣的小正方形如圖放置在大正方形中,
∴∠EGP+∠PGF=90°,
∴∠EGP=∠BGF
∴△BGF∽△PGE,
∴,
∴GB=AP=2a,
同理DE=2a,
∴PE=AD-AP-DE=6a,
∴EG==2a,
∴小正方形的邊長為a,
∴DH==a
∴tan∠DEH==
故本題正確選項為A。
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和相似三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;對應角相等,對應邊成比例的兩個三角形叫做相似三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOB的頂點O為坐標原點,點A的坐標為(4,0),點B的坐標為(0,1),點C為邊AB的中點,正方形OBDE的頂點E在x軸的正半軸上,連接CO,CD,CE.
(1)線段OC的長為;
(2)求證:△CBD≌△COE;
(3)將正方形OBDE沿x軸正方向平移得到正方形O1B1D1E1 , 其中點O,B,D,E的對應點分別為點O1 , B1 , D1 , E1 , 連接CD,CE,設點E的坐標為(a,0),其中a≠2,△CD1E1的面積為S.
①當1<a<2時,請直接寫出S與a之間的函數(shù)表達式;
②在平移過程中,當S= 時,請直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售國外、國內(nèi)兩種品牌的智能手機,這兩種手機的進價和售價如表所示
國外品牌 | 國內(nèi)品牌 | |
進價(萬元/部) | 0.44 | 0.2 |
售價(萬元/部) | 0.5 | 0.25 |
該商場計劃購進兩種手機若干部,共需14.8萬元,預計全部銷售后可獲毛利潤共2.7萬元.[毛利潤=(售價﹣進價)×銷售量]
(1)該商場計劃購進國外品牌、國內(nèi)品牌兩種手機各多少部?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少國外品牌手機的購進數(shù)量,增加國內(nèi)品牌手機的購進數(shù)量.已知國內(nèi)品牌手機增加的數(shù)量是國外品牌手機減少的數(shù)量的3倍,而且用于購進這兩種手機的總資金不超過15.6萬元,該商場應該怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在某市五個區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計如下.
(1)該公司在全市一共投放了 萬輛共享單車;
(2)在扇形統(tǒng)計圖中,B區(qū)所對應扇形的圓心角為 °;
(3)該公司在全市投放的共享單車的使用量占投放量的85%,請計算C區(qū)共享單車的使用量并補全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知三角形紙片ABC的面積為48,BC的長為8.按下列步驟將三角形紙片ABC進行裁剪和拼圖:
第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點F,在線段BC上任意取一點H,沿FH將四邊形紙片DBCE剪成兩部分;
第二步:如圖2,將FH左側(cè)紙片繞點D旋轉(zhuǎn)180°,使線段DB與DA重合;將FH右側(cè)紙片繞點E旋轉(zhuǎn)180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個與三角形紙片ABC面積相等的四邊形紙片.
圖1 圖2
(1)當點F,H在如圖2所示的位置時,請按照第二步的要求,在圖2中補全拼接成的四邊形;
(2)在按以上步驟拼成的所有四邊形紙片中,其周長的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知原點O,A(0,4),B(2,0),將△OAB繞平面內(nèi)一點P逆時針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形的兩個頂點恰好落在雙曲線 上,則旋轉(zhuǎn)中心P的坐標為。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O , AC是⊙O的直徑,D是弧AB的中點.過點D作CB的垂線,分別交CB、CA延長線于點F、E .
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com