如圖,平行四邊形ABCD的對(duì)角線(xiàn)交于點(diǎn)O,過(guò)點(diǎn)O的直線(xiàn)交AD于E、交BC于F,求證:
(1)△AOE≌△COF;
(2)四邊形AECF是平行四邊形.

【答案】分析:(1)因?yàn)槠叫兴倪呅蔚膶?duì)邊相等,對(duì)角線(xiàn)互相平分,可找到AO=OC,AD∥BC,可根據(jù)全等三角形的判定定理進(jìn)行證明.
(2)根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,可證明四邊形AECF是平行四邊形.
解答:證明:(1)∵在平行四邊形ABCD中,AO=OC,AD∥BC,
∴∠EAO=∠FCO,
又∵∠AOE=∠CDF,
∴△AOE≌△COF;(4分)

(2)∵△AOE≌△COF,
∴AE=CF,
∵AE∥CF,
∴四邊形AECF是平行四邊形.(6分)
點(diǎn)評(píng):本題考查了全等三角形的判定定理以及平行四邊形的判定和性質(zhì)定理,要熟記靈活運(yùn)用這些定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過(guò)D、E兩點(diǎn)的直線(xiàn)的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線(xiàn)BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,將直線(xiàn)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線(xiàn)段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫(huà)出直線(xiàn)AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線(xiàn)AC旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫(huà)圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線(xiàn)AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案