【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,翻折∠B,∠D,使點(diǎn)B,D兩點(diǎn)重合于對角線BD上一點(diǎn)P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是菱形ABCD的中心;②當(dāng)x= 時(shí),EF+GH>AC;③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是 ;④當(dāng)0<x<2時(shí),六邊形AEFCHG周長的值不變.其中正確結(jié)論是________.(填序號)
【答案】①④
【解析】
先確定出△ABC是等邊三角形,進(jìn)而判斷出△BEF是等邊三角形,當(dāng)x=1時(shí),求出,即可判斷出①正確,再用x表示出EF,BP,DP,GH,然后取x賦予的值,即可求出EF,GH,判斷出②錯(cuò)誤,利用菱形的面積減去兩個(gè)三角形的面積判斷出③錯(cuò)誤,利用周長的計(jì)算方法即可判定出④正確.
∵菱形ABCD的邊長為2,
∴AB=BC=2,
∵
∴
由折疊知,△BEF是等邊三角形,
當(dāng)x=1時(shí),則AE=1,
∴BE=ABAE=1,
由折疊知,
∴點(diǎn)P是菱形ABCD的對角線的交點(diǎn),
即:點(diǎn)P是菱形ABCD的中心,所以①正確,
如圖,
∵AE=x,
∴BE=ABAE=2x,
∵△BEF是等邊三角形,
∴EF=BE=2x,
∴
∴
∴
∴
∴
當(dāng)時(shí),
∴
∵△BEF是等邊三角形,
∴
∴
∴
∴EF+GH=2=AC,所以②錯(cuò)誤;
當(dāng)0<x<2時(shí),
∵AE=x,
∴BE=2x,
∴EF=2x,
∴
∴
∴
∴六邊形AEFCHG面積=S菱形ABCDS△BEFS△DGH
∴當(dāng)x=1時(shí),六邊形AEFCHG面積最大為,所以③錯(cuò)誤,
六邊形AEFCHG周長=AE+EF+FC+CH+HG+AG=x+2x+x+2x+x+2x=6是定值,
所以④正確,即:正確的有①④,
故答案為:①④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切線,A,B為切點(diǎn),若MA=4cm,MB=3cm,則M到AB的距離是( )
A. cm B. cm C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上的點(diǎn),E是AD的延長線的點(diǎn),且AE=AM,過E作EF⊥AM垂足為F,EF交DC于點(diǎn)N.
(1)求證:AF=BM;
(2)若AB=12,AF=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房價(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房價(jià)不得高于340元.設(shè)每個(gè)房間的房價(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用對稱性可設(shè)計(jì)出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點(diǎn)都在格點(diǎn)上).
(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90o后的圖形;
(2)完成上述設(shè)計(jì)后,整個(gè)圖案的面積等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于點(diǎn)Q.是否存在點(diǎn)P,使得QP=QO;若存在,求出相應(yīng)的∠OCP的大。蝗舨淮嬖,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和2,在20×20的等距網(wǎng)格(每格的寬和高均是1個(gè)單位長)中,Rt△ABC從點(diǎn)A與點(diǎn)M重合的位置開始,以每秒1個(gè)單位長的速度先向下平移,當(dāng)BC邊與網(wǎng)的底部重合時(shí),繼續(xù)同樣的速度向右平移,當(dāng)點(diǎn)C與點(diǎn)P重合時(shí),Rt△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△QAC的面積為y.
(1)如圖1,當(dāng)Rt△ABC向下平移到Rt△A1B1C1的位置時(shí),請你在網(wǎng)格中畫出Rt△A1B1C1關(guān)于直線QN成軸對稱的圖形;
(2)如圖2,在Rt△ABC向下平移的過程中,請你求出y與x的函數(shù)關(guān)系式,并說明當(dāng)x分別取何值時(shí),y取得最大值和最小值?最大值和最小值分別是多少?
(3)在Rt△ABC向右平移的過程中,請你說明當(dāng)x取何值時(shí),y取得最大值和最小值?最大值和最值分別是多少?為什么?(說明:在(3)中,將視你解答方法的創(chuàng)新程度,給予1~4分的加分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com