如圖,在矩形ABCD內(nèi),以BC為一邊作等邊三角形EBC,連接AE、DE.若BC=2,ED=,則AB的長為( )

A.2
B.2
C.+
D.2+
【答案】分析:過E作EF垂直于AD,由矩形ABCD的對邊平行得到AD與BC平行,進而得到EG垂直于BC,由三角形BEC為等邊三角形,利用三線合一得到G為BC中點,求出BG與EB的長,利用勾股定理求出EG的長,由對稱性得到AE=DE,利用三線合一得到F為AD的中點,由BC=AD=2,求出FD的長,再由DE的長,利用勾股定理求出EF的長,由FG=EF+EG即可求出AB的長.
解答:解:過E作EF⊥AD,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴EG⊥BC,
∵△BEC為邊長2的等邊三角形,
∴EB=2,BG=1,
根據(jù)勾股定理得:EG=,
由對稱性得到△AED為等腰三角形,即AE=DE,
∵DE=,F(xiàn)D=AD=1,
∴根據(jù)勾股定理得:EF=,
則AB=FG=FE+EG=+
故選C
點評:此題考查了等邊三角形的性質(zhì),勾股定理,以及矩形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案