【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個數(shù)據(jù) ,3, ,2, 中可以作為線段AQ長的有個.

【答案】3
【解析】解:作CD∥PQ,交AB于D,如圖所示: 則∠CDB=∠BQP,
∵AB=AC=5,
∴∠B=∠ACB,
∵∠BQP=∠B,
∴∠B=∠ACB=∠CDB,
∴CD=BC=3,△BCD∽△BAC,
,即 ,
解得:BD= ,
∴AD=AB﹣BD= ,
∵CD∥PQ,
∴△APQ∽△ACD,
,即 ,
解得:AP= AQ,
當AQ= 時,AP= × = >5,不合題意,舍去;
當AQ=3時,AP= ×3= <5,符合題意;
當AQ= 時,點P與C重合,不合題意,舍去;
當AQ=2時,AP= ×2= <5,符合題意;
當AQ= 時,AP= × = <5,符合題意;
綜上所述:可以作為線段AQ長的有3個;
所以答案是:3.

【考點精析】本題主要考查了等腰三角形的性質和相似三角形的判定與性質的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.
(1)寫出點M坐標的所有可能的結果;
(2)求點M在直線y=x上的概率;
(3)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為正方形ABCD的中心,分別延長OA、OD到點F、E,使OF=2OA,OE=2OD,連接EF.將△EOF繞點O逆時針旋轉α角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數(shù)量關系,并給予證明;
(2)當α=30°時,求證:△AOE1為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=ACBAC=54°,點DAB中點,且ODAB,BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC______ °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在

(1)比較∠BAD和∠DAC的大小。
(2)求sin∠BAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校田園科技社團計劃購進A、B兩種花卉,兩次購買每種花卉的數(shù)量以及每次的總費用如下表所示:

花卉數(shù)量(單位:株)

總費用(單位:元)

A

B

第一次購買

10

25

225

第二次購買

20

15

275


(1)你從表格中獲取了什么信息?(請用自己的語言描述,寫出一條即可);
(2)A、B兩種花卉每株的價格各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,tanB= ,BC=6,過點A作BC邊上的高,垂足為點D,且滿足BD:CD=2:1,則△ABC面積的所有可能值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點C從A點出發(fā),在邊AO上以2cm/s的速度向O點運動,與此同時,點D從點B出發(fā),在邊BO上以1.5cm/s的速度向O點運動,過OC的中點E作CD的垂線EF,則當點C運動了s時,以C點為圓心,1.5cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(1)閱讀材料:
教材中的問題,如圖1,把5個邊長為1的小正方形組成的十字形紙板剪開,使剪成的若干塊能夠拼成一個大正方形,小明的思考:因為剪拼前后的圖形面積相等,且5個小正方形的總面積為5,所以拼成的大正方形邊長為 , 故沿虛線AB剪開可拼成大正方形的一邊,請在圖1中用虛線補全剪拼示意圖
(2)類比解決:
如圖2,已知邊長為2的正三角形紙板ABC,沿中位線DE剪掉△ADE,請把紙板剩下的部分DBCE剪開,使剪成的若干塊能夠拼成一個新的正三角形.
拼成的正三角形邊長為;
(3)在圖2中用虛線畫出一種剪拼示意圖.
(4)靈活運用:
如圖3,把一邊長為60cm的正方形彩紙剪開,用剪成的若干塊拼成一個軸對稱的風箏,其中∠BCD=90°,延長DC、BC分別與AB、AD交于點E、F,點E、F分別為AB、AD的中點,在線段AC和EF處用輕質鋼絲做成十字形風箏龍骨,在圖3的正方形中畫出一種剪拼示意圖,并求出相應輕質鋼絲的總長度.(說明:題中的拼接都是不重疊無縫隙無剩余)

查看答案和解析>>

同步練習冊答案