精英家教網 > 初中數學 > 題目詳情

已知:在等腰梯形ABCD中,AD∥BC,AB=CD=5,EF是梯形ABCD的中位線,且EF=6,則梯形ABCD的周長是


  1. A.
    24
  2. B.
    22
  3. C.
    20
  4. D.
    16
B
分析:根據梯形的中位線定理:中位線=(上底+下底),求得上底AD與下底BC的和;然后根據已知條件“AB=CD=5、EF=6”、梯形的周長的定義(梯形的邊長之和)來求梯形的周長即可.
解答:設梯形ABCD的周長是l.
∵EF是梯形ABCD的中位線,
∴EF=(AD+BC);
又∵AB=CD=5,l=AB+CD+AD+BC,EF=6,
∴l(xiāng)=2(AB+AE)=22;
故選B.
點評:本題考查了梯形的中位線定理和等腰梯形的性質.梯形的中位線平行于兩底,并且等于兩底和的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,過B作EB⊥AB,交AC的延長線于E.
(1)求證:AD2=AC•CE;
(2)當BE=CD時,求證:△DCG≌△EBC.

查看答案和解析>>

科目:初中數學 來源: 題型:

28、已知:在等腰梯形ABCD中,AD∥BC,直線MN是梯形的對稱軸,P是MN上的一點.直線BP交直線DC于F,交CE于E,且CE∥AB.
(1)若點P在梯形的內部,如圖①.求證:BP2=PE•PF;
(2)若點P在梯形的外部,如圖②,那么(1)的結論是否成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:在等腰梯形ABCD中,AD∥BC,AB=CD=5,EF是梯形ABCD的中位線,且EF=6,則梯形ABCD的周長是(  )
A、24B、22C、20D、16

查看答案和解析>>

科目:初中數學 來源: 題型:

4、已知:在等腰梯形ABCD中,AD∥BC,AB=CD=4,MN是梯形ABCD的中位線,且MN=6,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2009•雅安)已知,在等腰梯形ABCD中,AD∥BC,AD=AB=2,∠B=60°,則梯形ABCD的周長( 。

查看答案和解析>>

同步練習冊答案