(1999•哈爾濱)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)P為BC邊上一點(diǎn),PE⊥AB,PF⊥CD,BG⊥CD,垂足分別為E、F、G.求證:PE+PF=BG.

【答案】分析:過P作PH⊥BG,把BG分成兩段,根據(jù)矩形得到PF=HG,再證明△BPH和△PBE全等得到PE=BH,所以PE+PF=BG.
解答:證明:過點(diǎn)P作PH⊥BG,垂足為H,
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四邊形PHGF是矩形,
∴PF=HG,PH∥CD,
∴∠BPH=∠C,
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,
∵∠PEB=∠BHP=90°,BP=PB,∠PBE=∠BPH,
∴△PBE≌△BPH(AAS),
∴PE=BH,
∴PE+PF=BH+HG=BG.
點(diǎn)評(píng):本題利用“截長補(bǔ)短法”的截長,即把較長的線段截為兩段,再分別證明線段相等,從而問題得以解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(4,0)為圓心,AO為半徑的圓交x軸于點(diǎn)B.設(shè)M為x軸上方的圓長交y軸于點(diǎn)D.
(1)當(dāng)點(diǎn)P在弧OM上運(yùn)動(dòng)時(shí),設(shè)PC=x,=y,求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),恰使OB=3OD,求此時(shí)AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(4,0)為圓心,AO為半徑的圓交x軸于點(diǎn)B.設(shè)M為x軸上方的圓長交y軸于點(diǎn)D.
(1)當(dāng)點(diǎn)P在弧OM上運(yùn)動(dòng)時(shí),設(shè)PC=x,=y,求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),恰使OB=3OD,求此時(shí)AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點(diǎn)O,以直線O1O2為x軸,O為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點(diǎn)A,與⊙O2相切于點(diǎn)B,直線AB交y軸于點(diǎn)c,若OA=3,OB=3.
(1)求經(jīng)過O1、C、O2三點(diǎn)的拋物線的解析式;
(2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點(diǎn),若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點(diǎn)D在y軸負(fù)半軸上.當(dāng)點(diǎn)D的坐標(biāo)為何值時(shí),四邊形MDNC是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(4,0)為圓心,AO為半徑的圓交x軸于點(diǎn)B.設(shè)M為x軸上方的圓長交y軸于點(diǎn)D.
(1)當(dāng)點(diǎn)P在弧OM上運(yùn)動(dòng)時(shí),設(shè)PC=x,=y,求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),恰使OB=3OD,求此時(shí)AC所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(1999•哈爾濱)函數(shù)y=中,自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案