【題目】在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y= 的一個交點為P(2,m),與x軸、y軸分別交于點A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.

【答案】
(1)解:∵y= 經(jīng)過P(2,m),

∴2m=8,

解得:m=4


(2)解:點P(2,4)在y=kx+b上,

∴4=2k+b,

∴b=4﹣2k,

∵直線y=kx+b(k≠0)與x軸、y軸分別交于點A,B,

∴A(2﹣ ,0),B(0,4﹣2k),

如圖,點A在x軸負半軸,點B在y軸正半軸時,

∵PA=2AB,

∴AB=PB,則OA=OC,

﹣2=2,

解得k=1;

當點A在x軸正半軸,點B在y軸負半軸時,

= ,

解得,k=3.

∴k=1或k=3


【解析】(1)將點P的坐標代入反比例函數(shù)的解析式即可求得m的值;(2)作PC⊥x軸于點C,設(shè)點A的坐標為(a,0),則AO=﹣a,AC=2﹣a,根據(jù)PA=2AB得到AB:AP=AO:AC=1:2,求得a值后代入求得k值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,分別交AC,BC于點D,E.

(1)求證:BE=CE.
(2)求∠BAC=40°時,∠ADE的度數(shù).
(3)過點E作⊙O的切線,交AB的延長線于點F,當AO=EF=2時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)了統(tǒng)計知識后,小剛就本班同學(xué)上學(xué)“喜歡的出行方式”進行了一次調(diào)查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:

(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應(yīng)的圓心角的度數(shù);
(2)如果全年級共600名同學(xué),請估算全年級步行上學(xué)的學(xué)生人數(shù);
(3)若由3名“喜歡乘車”的學(xué)生,1名“喜歡步行”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊參加一項活動,欲從中選出2人擔任組長(不分正副),列出所有可能的情況,并求出2人都是“喜歡乘車”的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為豐富學(xué)生的校園生活,準備從某體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買1個足球和2個籃球共需210元.購買2個足球和6個籃球共需580元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)學(xué)校的實際情況,需從該體育用品商店一次性購買足球和籃球共100個.要求購買足球和籃球的總費用不超過6000元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC= ,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為3,1.反比例函數(shù)y= 的圖象經(jīng)過A,B兩點,則菱形ABCD的面積為(

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杰瑞公司成立之初投資1500萬元購買新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本60元.按規(guī)定,該產(chǎn)品售價不得低于100元/件且不得超過180元/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價x(元)之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當盈利最大或者虧損最小時的產(chǎn)品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利達1340萬元?若能,求出第二年產(chǎn)品售價;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在邊長為8的等邊△ABC中,CD⊥AB,垂足為D,⊙O的圓心與點D重合,⊙O與線段CD交于點E,若將⊙O沿DC方向向上平移1cm后,如圖②,⊙O恰與△ABC的邊AC,BC相切,則圖①中CE的長為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B,C,D,E在同一直線上,并且BC=DE.若AB=CF,AD=EF.試探索AB與FC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案