【題目】從-2,-1,0,1,2,3,5這七個數(shù)中,隨機(jī)抽取一個數(shù)記為m,若數(shù)m使關(guān)于x的不等式組無解,且使關(guān)于x的一元一次方程(m-2)x=3有整數(shù)解,那么這六個數(shù)所有滿足條件的m的個數(shù)有( )
A.1B.2C.3D.4
【答案】D
【解析】
不等式組整理后,根據(jù)無解確定出的范圍,進(jìn)而得到的值,將的值代入檢驗,使一元一次方程的解為整數(shù)即可.
解:解:不等式組整理得:,
由不等式組無解,得到,
解得:,
即,0,1,2,3,5;
當(dāng)m=-1時,一元一次方程(m-2)x=3解為x=-1,符合題意;
當(dāng)m=0時,一元一次方程(m-2)x=3解為x=-1.5,不合題意;
當(dāng)m=1時,一元一次方程(m-2)x=3解為x=-3,符合題意;
當(dāng)m=2時,一元一次方程(m-2)x=3無解,不合題意;
當(dāng)m=3時,一元一次方程(m-2)x=3解為x=3,符合題意;
當(dāng)m=5時,一元一次方程(m-2)x=3解為x=1,符合題意.
故選:D
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)將兩幅不完整的圖補充完整;
(2)本次參加抽樣調(diào)查的居民有多少人?
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 是平行四邊形,點 在 軸上,反比例函數(shù) 的圖象經(jīng)過點 ,且與邊 交于點 ,若 ,則點 的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,池塘邊有塊長為20m,寬為10m的長方形土地,現(xiàn)在將其余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用含x的式子表示:
(1)菜地的長a= m,菜地的寬b= m;菜地的周長C= m;
(2)求當(dāng)x=1m時,菜地的周長C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與反比例函數(shù) 相交于點A(6,2),與x軸交于B點,點C在直線AB上且 .過B、C分別作y軸的平行線交雙曲線 于D、E兩點.
(1)求m、k的值;
(2)求點D、E坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,頂點為(2,﹣1)的拋物線交y軸于A點,交x軸于B、C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,3),連接AB.
(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關(guān)系,并給出證明;
(3)已知點P是拋物線上的一個動點,且位于A,C兩點之間,問:當(dāng)點P運動到什么位置時,△PAC的面積最大?并求出此時P點的坐標(biāo)和△PAC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在直角坐標(biāo)系xOy中,A(﹣1,0),B(3,0),將A,B同時分別向上平移2個單位,再向右平移1個單位,得到的對應(yīng)點分別為D,C,連接AD,BC.
(1)直接寫出點C,D的坐標(biāo):C ,D ;
(2)四邊形ABCD的面積為 ;
(3)點P為線段BC上一動點(不含端點),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com