如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,2),M是劣弧OB上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為(  )
分析:由∠BMO=120°,根據(jù)圓的內(nèi)接四邊形的性質(zhì),可求得∠BAO的度數(shù),又由點(diǎn)A的坐標(biāo)為(0,2),可求得AB的長(zhǎng),繼而求得⊙C的半徑長(zhǎng).
解答:解:∵∠BMO=120°,
∴∠BAO=180°-∠BMC=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵點(diǎn)A的坐標(biāo)為(0,2),
∴OA=2,
∴AB=2OA=4,
∵⊙C過(guò)原點(diǎn),
∴AB是直徑,
∴⊙C的半徑長(zhǎng)為2.
故選C.
點(diǎn)評(píng):此題考查了圓的內(nèi)接四邊形的性質(zhì)、圓周角定理以及含30°角的直角三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳)如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi)
OB
上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi)⊙C上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(廣東深圳卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi)上一點(diǎn),∠BM0=120o,則⊙C的半徑長(zhǎng)為【    】

A.6       B.5       C.3       D。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi)上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為( )

A.6
B.5
C.3
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案