【題目】如圖已知△CAB和△CDE中,CA=CB,CD=CE,∠BCA=∠DCE=.連BE,BD.
(1)如圖1,若∠BCA=60,BD與AE交于點(diǎn)F,求∠AFB的度數(shù);
(2)如圖2,請(qǐng)?zhí)骄?/span>∠EBD,∠AEB與之間的關(guān)系;
(3)如圖3,直接寫出∠EBD,∠AEB與之間的關(guān)系.
【答案】(1)60;(2)∠EBD-∠AEB=;(3)∠EBD+∠AEB+=360.
【解析】
(1)∠ACE=∠ACB+∠BCE=∠DCE+∠BCE=∠BCD,再由AC=BC和CE=CD可證明△ACE≌BCD,則∠CAE=∠CBD,由圖可知∠CAE+∠ACB=∠CBD+∠BFA,則∠AFB=∠ACB=60°;
(2)由AC=BC,EC=DC且∠ACE=∠α-∠ECB=∠BCD,易證△ACE≌BCD,則∠AEC=∠BDC,再由∠EBD=∠CEB+∠CDB+∠ECD可得
∠EBD=∠AEB+∠ECD=∠AEB+,則∠EBD-∠AEB=;
(3)同上易證△ACE≌BCD,從而∠CAE=∠CBD,由四邊形ECDB的內(nèi)角和定理可得∠CEB+∠CBD+∠ECD+∠BDC=360°,則∠EBD+∠AEB+=360.
(1)∵∠ACE=∠ACB+∠BCE,∠BCD=∠DCE+∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠CAE=∠CBD,
∵∠CAE+∠ACB=∠CBD+∠BFA,
∴∠AFB=∠ACB=60°.
(2)∠EBD-∠AEB=.
證明:
∵∠ACE=∠ACB-∠BCE,∠BCD=∠DCE-∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠AEC=∠BDC,
∵∠EBD=∠CEB+∠CDB+∠ECD,
∴∠EBD=∠AEB+∠ECD=∠AEB+,
即∠EBD-∠AEB=.
(3)∠EBD+∠AEB+=360.
∵∠ACE=∠ACB-∠BCE,∠BCD=∠DCE-∠BCE,
∴∠ACE=∠BCD,
又∵AC=BC,CE=CD,
∴△ACE≌BCD,
∴∠CAE=∠CBD,
在四邊形ECDB中,
∵∠CEB+∠CBD+∠ECD+∠BDC=360°,
∴∠EBD+∠AEB+=360.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求值: ﹣ ÷(1﹣ ).其中m滿足一元二次方程m2+(5 tan30°)m﹣12cos60°=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,OD⊥BC于點(diǎn)D,延長(zhǎng)DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當(dāng)∠1=時(shí),四邊形OCAF是菱形; ②當(dāng)∠1=時(shí),AB=2 OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),一組互相平行的直線共有n條(n≥2,且n為正整數(shù)),它們和兩條平行線a,b相交,構(gòu)成若干個(gè)“#”字形. 設(shè)構(gòu)成的“#”字形的個(gè)數(shù)為x,請(qǐng)找出規(guī)律,并填寫下表.
n | 2 | 3 | 4 | 5 | … | n |
x | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:
(1)三條直線相交,最少有__________個(gè)交點(diǎn),最多有__________個(gè)交點(diǎn),分別畫出圖形,并數(shù)出圖形中的對(duì)頂角和鄰補(bǔ)角的對(duì)數(shù);
(2)四條直線相交,最少有__________個(gè)交點(diǎn),最多有__________個(gè)交點(diǎn),分別畫出圖形,并數(shù)出圖形中的對(duì)頂角和鄰補(bǔ)角的對(duì)數(shù);
(3)依次類推,n條直線相交,最少有__________個(gè)交點(diǎn),最多有__________個(gè)交點(diǎn),對(duì)頂角有__________對(duì),鄰補(bǔ)角有__________對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑OA=2cm,圓心角為90°的扇形OAB中,C為 的中點(diǎn),D為OB的中點(diǎn),則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀理解】
我們知道,當(dāng)a>0且b>0時(shí),( ﹣ )2≥0,所以a﹣2 +≥0,從而a+b≥2 (當(dāng)a=b時(shí)取等號(hào)),
【獲得結(jié)論】設(shè)函數(shù)y=x+ (a>0,x>0),由上述結(jié)論可知:當(dāng)x= 即x= 時(shí),函數(shù)y有最小值為2
(1)【直接應(yīng)用】
若y1=x(x>0)與y2= (x>0),則當(dāng)x=時(shí),y1+y2取得最小值為 .
(2)【變形應(yīng)用】
若y1=x+1(x>﹣1)與y2=(x+1)2+4(x>﹣1),則 的最小值是
(3)【探索應(yīng)用】
在平面直角坐標(biāo)系中,點(diǎn)A(﹣3,0),點(diǎn)B(0,﹣2),點(diǎn)P是函數(shù)y= 在第一象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為x,四邊形ABCD的面積為S
①求S與x之間的函數(shù)關(guān)系式;
②求S的最小值,判斷取得最小值時(shí)的四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“陽光體育一小時(shí)”活動(dòng),按學(xué)校實(shí)際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)本次共調(diào)查了名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“B”所在扇形的圓心角是度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動(dòng)的學(xué)生約有名.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com