精英家教網 > 初中數學 > 題目詳情
已知二次函數y=ax2+bx-1的圖象經過點(2,-1),且這個函數有最小值-3,求這個函數的關系式.
【答案】分析:由y=ax2+bx-1可知拋物線過點(0,-1),已知經過點(2,-1),可知拋物線對稱軸為x==1,故拋物線頂點坐標為(1,-3),設頂點式,將點(2,-1)代入求a即可.
解答:解:由y=ax2+bx-1可知,拋物線過點(0,-1),
又拋物線經過點(2,-1),
∴拋物線對稱軸為x=1,即拋物線頂點坐標為(1,-3),
設拋物線解析式為y=a(x-1)2-3,
將點(2,-1)代入,得a-3=-1
解得a=2,
拋物線解析式為y=2(x-1)2-3=2x2-4x-1.
點評:本題考查了用待定系數法求二次函數解析式的方法.關鍵是根據條件確定拋物線解析式的形式,再求其中的待定系數.一般式:y=ax2+bx+c(a≠0);頂點式y(tǒng)=a(x-h)2+k,其中頂點坐標為(h,k);交點式y(tǒng)=a(x-x1)(x-x2),拋物線與x軸兩交點為(x1,0),(x2,0).
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、已知二次函數y=a(x+1)2+c的圖象如圖所示,則函數y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數學試卷(解析版) 題型:選擇題

已知二次函數y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

已知二次函數y=ax+bx+c(a≠0,a,b,c為常數),對稱軸為直線x=1,它的部分自變量與函數值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案