△ABC是銳角三角形,BC=6,面積為12,點(diǎn)P在AB上,點(diǎn)Q在AC上,如圖所示,正方形PQRS(R精英家教網(wǎng)S與A在PQ的異側(cè))的邊長(zhǎng)為x,正方形PQRS與△ABC公共部分的面積為y.
(1)當(dāng)RS落在BC上時(shí),求x;
(2)當(dāng)RS不落在BC上時(shí),求y與x的函數(shù)關(guān)系式;
(3)求公共部分面積的最大值.
分析:(1)當(dāng)RS落在BC上時(shí),先求△ABC的BC邊上的高,由△APQ∽△ABC,利用相似比求x;
(2)分為當(dāng)RS落在△ABC外部或內(nèi)部?jī)煞N情況,當(dāng)RS在△ABC外部時(shí),由相似得公共部分的長(zhǎng)、寬,表示面積,當(dāng)RS在△ABC內(nèi)部時(shí),正方形面積即為公共部分面積;
(3)根據(jù)(1)(2)所求函數(shù)關(guān)系式,結(jié)合自變量取值范圍分別求最大值,比較得出結(jié)論.
解答:精英家教網(wǎng)解:(1)過A作AD⊥BC于D交PQ于E,則AD=4,
由△APQ∽△ABC,得
4-x
4
=
x
6
,故x=
12
5


(2)①當(dāng)RS落在△ABC外部時(shí),由△APQ∽△ABC,得AE=
2
3
x

故y=x(4-
2
3
x)=-
2
3
x2+4x(
12
5
<x≤6);
②當(dāng)RS落在△ABC內(nèi)部時(shí),y=x2(0<x<
12
5
).

(3)①當(dāng)RS落在△ABC外部時(shí),y=-
2
3
x2+4x=-
2
3
(x-3)2+6  (
12
5
<x≤6),
∴當(dāng)x=3時(shí),y有最大值6,
②當(dāng)RS落在BC邊上時(shí),由x=
12
5
可知,y=
144
25

③當(dāng)RS落在△ABC內(nèi)部時(shí),y=x2(0<x<
12
5
),
故比較以上三種情況可知:公共部分面積最大為6;
點(diǎn)評(píng):本題考查了二次函數(shù)最值在求長(zhǎng)方形面積中的運(yùn)用.關(guān)鍵是根據(jù)題意表示長(zhǎng)方形的面積,再根據(jù)自變量的取值范圍及二次函數(shù)的最值求法求解.本題還考查了分類討論的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

38、如圖1中的△ABC是直角三角形,∠C=90°.現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)邊上,那么符合條件的矩形可以畫出兩個(gè),如圖2所示:

(1)設(shè)圖2中的矩形ACBD和矩形AEFB的面積分別為S1和S2,則S1
=
S2(填“>”,“=”,“<”)
(2)如圖3中的△ABC是銳角三角形,且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么
符合要求的矩形可以畫出
3
個(gè),并在圖3中把符合要求的矩形畫出來.
(3)在圖3中所畫出的矩形中,它們的面積之間具有怎樣的關(guān)系?并說明你的理由;
(4)猜想圖3中所畫的矩形的周長(zhǎng)之間的大小關(guān)系,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、△ABC的三邊為a、b、c,且(a+b)(a-b)=c2,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是銳角三角形,BE、CF分別為∠ABC與∠ACB的角平分線,BE、CF相交于點(diǎn)O,
(1)若∠A=50°,求∠BOC的度數(shù).
(2)∠BOC與∠A有怎樣的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下列語句中①由∠A:∠B:∠C=2:3:4可確定△ABC是銳角三角形;②某等腰三角形的兩邊長(zhǎng)分別為4和6,則這個(gè)三角形的周長(zhǎng)為14或16;③一個(gè)圖形和它經(jīng)過平移所得的圖形中,兩組對(duì)應(yīng)點(diǎn)的連線平行;④對(duì)任何數(shù)a都有a0=1;⑤
x=2
y=1
是二元一次方程組,其中正確的是
①②⑤
①②⑤
(只要寫序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案