【題目】新冠疫情影響,全國中小學(xué)延遲開學(xué),很多學(xué)校都開展起了線上教學(xué),市場上對手寫板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)A,B兩種型號的手寫板,若生產(chǎn)20A型號和30B型號手寫板,共需要投入36000元;若生產(chǎn)30A型號和20B型號手寫板,共需要投入34000元.

1)請問生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本?

2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準(zhǔn)備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設(shè)生產(chǎn)了A型號手寫板a個,求w關(guān)于a的函數(shù)關(guān)系式;

3)在(2)的條件下,若要求生產(chǎn)A型號手寫板的數(shù)量不能少于B型號手寫板數(shù)量的2倍,請你設(shè)計出總獲利最大的生產(chǎn)方案,并求出最大總獲利.

【答案】1)生產(chǎn)A種型號的手寫板需要投入成本600元,生產(chǎn)B種型號的手寫板需要投入成本800元;(2w=﹣100a+50000;(3)總獲利最大的生產(chǎn)方案是生產(chǎn)A型號的手寫板100臺,B型號的手寫板50臺,最大總獲利是40000元.

【解析】

1)根據(jù)生產(chǎn)20A型號和30B型號手寫板,共需要投入36000元;若生產(chǎn)30A型號和20B型號手寫板,共需要投入34000元,可以列出相應(yīng)的二元一次方程組,從而可以求得生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本;

2)根據(jù)題意和(1)中的結(jié)果可以得到wa的函數(shù)關(guān)系式;

3)要求生產(chǎn)A型號手寫板的數(shù)量不能少于B型號手寫板數(shù)量的2倍,可以得到a的取值范圍,再根據(jù)(2)中的函數(shù)關(guān)系式和一次函數(shù)的性質(zhì)可以得到總獲利最大的生產(chǎn)方案,并求出最大總獲利.

解:(1)設(shè)生產(chǎn)A種型號的手寫板需要投入成本元,生產(chǎn)B種型號的手寫板需要投入成本元,

,得

即生產(chǎn)A種型號的手寫板需要投入成本600元,生產(chǎn)B種型號的手寫板需要投入成本800元;

2該廠家準(zhǔn)備用10萬元資金全部生產(chǎn)這兩種手寫板,生產(chǎn)了A型號手寫板a個,

生產(chǎn)B型號的手寫板的數(shù)量為:(個),

∴w200a+400×=﹣100a+50000

w關(guān)于a的函數(shù)關(guān)系式為w=﹣100a+50000;

3要求生產(chǎn)A型號手寫板的數(shù)量不能少于B型號手寫板數(shù)量的2倍,

∴a≥×2,

∴a≥100

∵w=﹣100a+50000,

當(dāng)a100時,w取得最大值,此時w4000050,

答:總獲利最大的生產(chǎn)方案是生產(chǎn)A型號的手寫板100臺,B型號的手寫板50臺,最大總獲利是40000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了估計某地區(qū)供暖期間空氣質(zhì)量情況,某同學(xué)在20天里做了如下記錄:

污染指數(shù)(ω

40

60

80

100

120

140

天數(shù)(天)

3

2

3

4

5

3

其中ω50時空氣質(zhì)量為優(yōu),50≤ω≤100時空氣質(zhì)量為良,100ω≤150時空氣質(zhì)量為輕度污染.若按供暖期125天計算,請你估計該地區(qū)在供暖期間空氣質(zhì)量達(dá)到良以上(含良)的天數(shù)為( 。

A.75B.65C.85D.100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國家政策的宏觀調(diào)控下,某市的商品房成交均價由今年3月份的14 000/m2下降到5月份的12 600/m2.

(1)4,5兩月平均每月降價的百分率約是多少?(參考數(shù)據(jù):≈0.95)

(2)如果房價繼續(xù)跌落,按此降價的百分率,你預(yù)測到7月份該市的商品房成交均價是否會跌跛10 000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標(biāo)有125,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1x+11m經(jīng)過一、二、四象限且關(guān)于x的分式方程3x+的解為整數(shù)的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組)或不等式組:

1)解方程組

2)解分式方程+1

3)求不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,△ABC三個頂點(diǎn)坐標(biāo)分別為A(-2,4),B(-2,1),C(-5,2).

1)將△ABC繞著O順時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1,并寫出A1的坐標(biāo);

2)以原點(diǎn)O為位似中心,在第一象限畫出△A1B1C1的位似圖形△A2B2C2,相似比為12,并寫出A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知,在矩形中,點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),連接、,若,,,則線段的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】慈氏塔位于岳陽市城西洞庭湖邊,是湖南省保存最好的古塔建筑之一.如圖,小亮的目高CD1.7米,他站在D處測得塔頂?shù)难鼋恰?/span>ACG45°,小琴的目高EF1.5米,她站在距離塔底中心B點(diǎn)a米遠(yuǎn)的F處,測得塔頂?shù)难鼋恰?/span>AEH62.3°.(點(diǎn)D、B、F在同一水平線上,參考數(shù)據(jù):sin62.3°≈0.89,cos62.3°≈0.46tan62.3°≈1.9)

(1)求小亮與塔底中心的距離BD;(用含a的式子表示)

(2)若小亮與小琴相距52米,求慈氏塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+ca≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個交點(diǎn)在點(diǎn)(30)和(4,0)之間.則下列結(jié)論:①ab+c0;②3a+b=0;③b2=4acn);④一元二次方程ax2+bx+c=n1有兩個不相等的實(shí)數(shù)根.其中正確結(jié)論的是______________(只填序號)

查看答案和解析>>

同步練習(xí)冊答案