【題目】某進(jìn)口專(zhuān)營(yíng)店銷(xiāo)售一種“特產(chǎn)”,其成本價(jià)是20元/千克,根據(jù)以往的銷(xiāo)售情況描出銷(xiāo)量y(千克/天)與售價(jià)x(元/千克)的關(guān)系,如圖所示.

(1)試求出y與x之間的一個(gè)函數(shù)關(guān)系式;

(2)利用(1)的結(jié)論:

①求每千克售價(jià)為多少元時(shí),每天可以獲得最大的銷(xiāo)售利潤(rùn).

②進(jìn)口產(chǎn)品檢驗(yàn)、運(yùn)輸?shù)冗^(guò)程需耗時(shí)5天,該“特產(chǎn)”最長(zhǎng)的保存期為一個(gè)月(30天),若售價(jià)不低于30元/千克,則一次進(jìn)貨最多只能多少千克?

【答案】(1)函數(shù)關(guān)系式為y=﹣2x+112;(2)每千克售價(jià)為38元時(shí),每天可以獲得最大的銷(xiāo)售利潤(rùn);一次進(jìn)貨最多只能是1300千克.

【解析】

試題分析:(1)根據(jù)圖中的信息可看出,圖形經(jīng)過(guò)(37,38),(39,34),(40,32),根據(jù)待定系數(shù)法可求函數(shù)關(guān)系式;(2)①根據(jù)函數(shù)的最值問(wèn)題即可求解;②根據(jù)“特產(chǎn)”的保存時(shí)間和運(yùn)輸路線的影響,“特產(chǎn)”的銷(xiāo)售時(shí)間最多是25天.要想使售價(jià)不低于30元/千克,就必須在最多25天內(nèi)賣(mài)完,當(dāng)售價(jià)為30元/千克時(shí),銷(xiāo)售量已經(jīng)由(1)求出,因此可以根據(jù)最多進(jìn)貨的量÷30元/千克時(shí)的銷(xiāo)售量25天,由此來(lái)列不等式,求出最多的進(jìn)貨量.

試題解析:(1)設(shè)y與x之間的一個(gè)函數(shù)關(guān)系式為y=kx+b,則,

解得

故函數(shù)關(guān)系式為y=﹣2x+112;

(2)依題意有

w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,

故每千克售價(jià)為38元時(shí),每天可以獲得最大的銷(xiāo)售利潤(rùn);

由題意可得,售價(jià)越低,銷(xiāo)量越大,即能最多的進(jìn)貨,

設(shè)一次進(jìn)貨最多m千克,

30﹣5,

解得:m1300.

故一次進(jìn)貨最多只能是1300千克.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】比較大。tan 50°_____tan 48°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】比較大小:﹣53(填>,<或=).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:“如果m是整數(shù),那么它是有理數(shù)”,則它的逆命題為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠1的補(bǔ)角是∠2,且∠1>∠2,那么∠2是(
A.直角
B.銳角
C.鈍角
D.平角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初一(一)班舉行了一次集郵展覽,展出的郵票比平均每人3張多24張,比平均每人4張少26張,這個(gè)班共展出郵票的張數(shù)是(

A. 164 B. 178 C. 168 D. 174

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)一次函數(shù)y=k1x+b1和y=k2x+b2滿(mǎn)足k1=k2,b1b2,那么稱(chēng)這兩個(gè)一次函數(shù)為“平行一次函數(shù)”.如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn),一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

(1)若函數(shù)y=kx+b的圖象過(guò)點(diǎn)(3,1),求b的值;

(2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和AOB構(gòu)成位似圖形,位似中心為原點(diǎn),位似比為1:2,求函數(shù)y=kx+b的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿(mǎn)足條件大于-1而小于π的整數(shù)共有 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.

當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),如圖2,點(diǎn)A、B都在原點(diǎn)的右邊

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;

如圖3,當(dāng)點(diǎn)A、B都在原點(diǎn)的左邊,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;

如圖4,當(dāng)點(diǎn)A、B在原點(diǎn)的兩邊,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;

回答下列問(wèn)題:

(1)數(shù)軸上表示1和6的兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和-3的兩點(diǎn)之間的距離是 ;

(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-4,則點(diǎn)A和B之間的距離是 ,若∣AB∣=3,那么x為 ;

(3)當(dāng)x是 時(shí),代數(shù)式

(4)若點(diǎn)A表示的數(shù),點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q與點(diǎn)P 相距1個(gè)單位?(請(qǐng)寫(xiě)出必要的求解過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案