【題目】如圖,△AOB的三個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為一個(gè)長(zhǎng)度單位, 以點(diǎn)O建立平面直角坐標(biāo)系,若△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后,得到△A1OB1(A和A1是對(duì)應(yīng)點(diǎn))

(1)畫(huà)出△A1OB1

(2)寫(xiě)出點(diǎn)A1,B1的坐標(biāo);

(3)求旋轉(zhuǎn)過(guò)程中邊OB掃過(guò)的面積(結(jié)果保留π).

【答案】(1)如圖,△A1OB1為所求見(jiàn)解析;(2)點(diǎn)A1的的坐標(biāo)為(-4,1), 點(diǎn)B1的的坐標(biāo)為(-3,3);(3)旋轉(zhuǎn)過(guò)程中邊OB掃過(guò)的面積=.

【解析】

(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出點(diǎn)A、B的對(duì)應(yīng)點(diǎn)A1、B1,即可得到△A1OB1; (2)根據(jù)點(diǎn)A1、B1再網(wǎng)格中的位置,直接寫(xiě)出坐標(biāo)即可;(3)由于旋轉(zhuǎn)過(guò)程中邊OB掃過(guò)的部分為以O為圓心,OB為半徑,圓心角為90度的扇形,利用扇形面積公式即可求解.

(1)如圖,△A1OB1為所求;

(2)點(diǎn)A1的的坐標(biāo)為(-4,1), 點(diǎn)B1的的坐標(biāo)為(-3,3);

(3)

∴旋轉(zhuǎn)過(guò)程中邊OB掃過(guò)的面積=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.且矩形的長(zhǎng)與寬的比為3:2,求這個(gè)矩形零件的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將2019個(gè)邊長(zhǎng)為1的正方形按如圖所示的方式排列,點(diǎn)AA1,A2,A3,……A2019和點(diǎn)M,M1,M2……,M2018是正方形的頂點(diǎn),連接A1M,A2M1,A3M2,……A2018分別交正方形的邊A1M,A2M1,A3M2,……A2018M2017于點(diǎn)N1,N2,N3……N2018,四邊形M1N1A1A2的面積是,四邊形M2N2A2A3的面積是,…,則為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

(2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過(guò)點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,k,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.

(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根.

(2)設(shè)x1,x2是方程(k﹣1)x2+2kx+2=0的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點(diǎn)在圓上,兩邊與圓相交,同弧所對(duì)的圓周角相等,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.

下面是他的探究過(guò)程,請(qǐng)補(bǔ)充完整:

定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對(duì)的一個(gè)圓外角.

(1)請(qǐng)?jiān)趫D2中畫(huà)出所對(duì)的一個(gè)圓內(nèi)角;

提出猜想

(2)通過(guò)多次畫(huà)圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(大于等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;

問(wèn)題解決

經(jīng)過(guò)證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問(wèn)題.

(4)如圖3F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫(xiě)出思路即可,不要求寫(xiě)出作法和畫(huà)圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲車(chē)從A地駛往B地,同時(shí)乙車(chē)從B地駛往A地,兩車(chē)相向而行,勻速行駛,甲車(chē)距B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示,乙車(chē)的速度是60km/h

(1)求甲車(chē)的速度;

(2)當(dāng)甲乙兩車(chē)相遇后,乙車(chē)速度變?yōu)閍(km/h),并保持勻速行駛,甲車(chē)速度保持不變,結(jié)果乙車(chē)比甲車(chē)晚38分鐘到達(dá)終點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是置于水平地面上的一個(gè)球形儲(chǔ)油罐,小敏想測(cè)量它的半徑、在陽(yáng)光下,他測(cè)得球的影子的最遠(yuǎn)點(diǎn)A到球罐與地面接觸點(diǎn)B的距離是10(如示意圖,AB10);同一時(shí)刻,他又測(cè)得豎直立在地面上長(zhǎng)為1米的竹竿的影子長(zhǎng)為2米,那么,球的半徑是________米.

查看答案和解析>>

同步練習(xí)冊(cè)答案