【題目】已知拋物線的開口向上頂點(diǎn)為P

1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;

2)若此拋物線經(jīng)過(4,一1),當(dāng)-1x2時(shí),求y的取值范圍(用含a的代數(shù)式表示)

3)若a1,且當(dāng)0x1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值

【答案】1;(214ay45a;(3b2或-10.

【解析】

1)將P4,-1)代入,可求出解析式
2)將(4,-1)代入求得:b=-4a-1,再代入對(duì)稱軸直線 中,可判斷,且開口向上,所以yx的增大而減小,再把x=-1x=2代入即可求得.
3)觀察圖象可得,當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,這些點(diǎn)可能為x=0,x=1三種情況,再根據(jù)對(duì)稱軸在不同位置進(jìn)行討論即可.

解:(1)由此拋物線頂點(diǎn)為P4,-1),

所以yax-42-1ax28ax16a1,即16a13,解得a=, b=-8a=-2

所以拋物線解析式為:

2)由此拋物線經(jīng)過點(diǎn)C4,-1),

所以 116a4b3,即b=-4a1

因?yàn)閽佄锞的開口向上,則有

其對(duì)稱軸為直線,而

所以當(dāng)-1≤x≤2時(shí),y隨著x的增大而減小

當(dāng)x=-1時(shí),y=a+(4a+1)+3=4+5a

當(dāng)x2時(shí),y=4a-2(4a+1)+3=1-4a

所以當(dāng)-1≤x≤2時(shí),14a≤y≤45a;

3)當(dāng)a1時(shí),拋物線的解析式為yx2bx3

∴拋物線的對(duì)稱軸為直線

由拋物線圖象可知,僅當(dāng)x0x1x=-時(shí),拋物線上的點(diǎn)可能離x軸最遠(yuǎn)

分別代入可得,當(dāng)x0時(shí),y=3

當(dāng)x=1時(shí),yb4

當(dāng)x=-時(shí),y=-+3

①當(dāng)一0,即b0時(shí),3≤y≤b+4,

b46解得b2

②當(dāng)0≤-≤1時(shí),即一2≤b≤0時(shí),b2120,拋物線與x軸無公共點(diǎn)

b46解得b2(舍去);

③當(dāng) ,即b<-2時(shí),b4≤y≤3,

b4=-6解得b=-10

綜上,b2或-10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙的直徑,過點(diǎn)A作⊙的切線并在其上取一點(diǎn)C,連接OC交⊙于點(diǎn)D,BD的延長(zhǎng)線交ACE,連接AD.

(1)求證:;

(2)若AB=2,,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的周長(zhǎng)為8,對(duì)角線BD2E、F分別是邊AD,CD上的兩個(gè)動(dòng)點(diǎn);且滿足AE+CF2

1)求證:△BDE≌△BCF;

2)判斷△BEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請(qǐng)直接寫出所有滿足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na,1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請(qǐng)求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了考察九年級(jí)學(xué)生的中考體育測(cè)試成績(jī)(滿分30分),隨機(jī)抽查了40名學(xué)生的成績(jī)(單位:分),得到如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)圖中m的值為_______________.

2)求這40個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):

3)根據(jù)樣本數(shù)據(jù),估計(jì)該中學(xué)九年級(jí)2000名學(xué)生中,體育測(cè)試成績(jī)得滿分的大約有多少名學(xué)生。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個(gè)觀測(cè)站,AB的正東方向2千米處.有一艘小船在觀測(cè)點(diǎn)A北偏西60°的方向上航行,一段時(shí)間后,到達(dá)點(diǎn)C處,此時(shí),從觀測(cè)點(diǎn)B測(cè)得小船在北偏西15°方向上.求點(diǎn)C與點(diǎn)B之間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園要建一個(gè)圓形噴水池,在噴水池的中心安裝一個(gè)大的噴水頭,高度為m,噴出的水柱沿拋物線軌跡運(yùn)動(dòng)(如圖),在離中心水平距離4m處達(dá)到最高,高度為6m,之后落在水池邊緣,那么這個(gè)噴水池的直徑AB____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段AB,那么A﹣2,5)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A. 2,5B. 5,2C. 4D. ,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

給定一個(gè)矩形,如果存在另一個(gè)矩形,它的周長(zhǎng)和面積分別是已知矩形的周長(zhǎng)和面積的 2 倍,則這個(gè)矩形是給定矩形的“加倍”矩形.如圖,矩形 A1B1C1D1是矩形 ABCD 的“加倍”矩形.請(qǐng)你解決下列問題:

1)邊長(zhǎng)為 a 的正方形存在“加倍”正方形嗎?如果存在,求出“加倍”正方形的邊長(zhǎng);如果不存在,說明理由.

2)當(dāng)矩形的長(zhǎng)和寬分別為 m,n 時(shí),它是否存在“加倍”矩形?請(qǐng)作出判斷,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案